Second-order Wagner theory for two-dimensional water-entry problems at small deadrise angles

2007 ◽  
Vol 572 ◽  
pp. 59-85 ◽  
Author(s):  
J. M. OLIVER

The theory of Wagner from 1932 for the normal symmetric impact of a two-dimensional body of small deadrise angle on a half-space of ideal and incompressible liquid is extended to derive the second-order corrections for the locations of the higher-pressure jet-root regions and for the upward force on the impactor using a systematic matched-asymptotic analysis. The second-order predictions for the upward force on an entering wedge and parabola are compared with numerical and experimental data, respectively, and it is concluded that a significant improvement in the predictive capability of Wagner's theory is afforded by proceeding to second order.

1990 ◽  
Vol 112 (2) ◽  
pp. 192-198 ◽  
Author(s):  
N. Takemitsu

An asymptotic solution of the standard k–ε model for two-dimensional turbulent channel flow is found. Using this solution, five model constants in the model are all determined reasonably with the aid of experimental data. If an asymptotic solution with the logarithmic law as the leading term is sought for, the standard k–ε model is shown to be ill-posed since the second-order solution has divergent terms.


2015 ◽  
Vol 26 (5) ◽  
pp. 671-719 ◽  
Author(s):  
J. M. OLIVER ◽  
J. P. WHITELEY ◽  
M. A. SAXTON ◽  
D. VELLA ◽  
V. S. ZUBKOV ◽  
...  

We investigate the effect of mass transfer on the evolution of a thin, two-dimensional, partially wetting drop. While the effects of viscous dissipation, capillarity, slip and uniform mass transfer are taken into account, other effects, such as gravity, surface tension gradients, vapour transport and heat transport, are neglected in favour of mathematical tractability. Our focus is on a matched-asymptotic analysis in the small-slip limit, which reveals that the leading-order outer formulation and contact-line law depend delicately on both the sign and the size of the mass transfer flux. This leads, in particular, to novel generalisations of Tanner's law. We analyse the resulting evolution of the drop on the timescale of mass transfer and validate the leading-order predictions by comparison with preliminary numerical simulations. Finally, we outline the generalisation of the leading-order formulations to prescribed non-uniform rates of mass transfer and to three dimensions.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


2016 ◽  
pp. 4115-4125
Author(s):  
Argha Deb

The event-by-event fluctuation of hadronic patterns is investigated by finding a measure of the non-hadronic regions, the voids, for the experimental data of p-AgBr interactions at 400 GeV/c considering the anisotropy of phase space. Two moments of the event-to-event fluctuation of voids, <Gq> and Sq have been calculated as defined by R. C. Hwa and Q. H. Zhang to quantify the dependence of the voids on the bin sizes. The results suggest that no quark-hadron phase transition of second order have taken place for p-AgBr interactions at 400 GeV/c. The result have been compared with the result of VENUS generated data.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


The behaviour of a viscous vortex ring is examined by a matched asymptotic analysis up to three orders. This study aims at investigating how much the location of maximum vorticity deviates from the centroid of the vortex ring, defined by P. G. Saffman (1970). All the results are presented in dimensionless form, as indicated in the following context. Let Γ be the initial circulation of the vortex ring, and R denote the ring radius normalized by its initial radius R i . For the asymptotic analysis, a small parameter ∊ = ( t / Re ) ½ is introduced, where t denotes time normalized by R 2 i / Γ , and Re = Γ/v is the Reynolds number defined with Γ and the kinematic viscosity v . Our analysis shows that the trajectory of maximum vorticity moves with the velocity (normalized by Γ/R i ) U m = – 1/4π R {ln 4 R /∊ + H m } + O (∊ ln ∊), where H m = H m ( Re, t ) depends on the Reynolds number Re and may change slightly with time t for the initial motion. For the centroid of the vortex ring, we obtain the velocity U c by merely replacing H m by H c , which is a constant –0.558 for all values of the Reynolds number. Only in the limit of Re → ∞, the values of H m and H c are found to coincide with each other, while the deviation of H m from the constant H c is getting significant with decreasing the Reynolds number. Also of interest is that the radial motion is shown to exist for the trajectory of maximum vorticity at finite Reynolds numbers. Furthermore, the present analysis clarifies the earlier discrepancy between Saffman’s result and that obtained by C. Tung and L. Ting (1967).


Sign in / Sign up

Export Citation Format

Share Document