Fluctuations above a burning heterogeneous propellant

2007 ◽  
Vol 581 ◽  
pp. 1-32 ◽  
Author(s):  
L. MASSA ◽  
T. L. JACKSON ◽  
J. BUCKMASTER ◽  
F. NAJJAR

A numerical description of heterogeneous propellant combustion enables us to examine the spatial and temporal fluctuations in the flow field arising from the heterogeneity. Particular focus is placed on the fluctuations in a zone intermediate between the combustion field (where reaction is important) and the chamber flow domain, for these define boundary conditions for simulations of the turbulent chamber flow. The statistics of the temperature field and the normal velocity field are described, and characteristic length scales and time scales are identified. The length scales are small compared to any relevant length scale of the chamber flow, and so the boundary conditions for this flow at any mesh point are statistically independent of those at any other mesh point. But the temporal correlations at a fixed point are significant, and affect the nature of the chamber flow in a variety of ways. We describe the fluctuations in the head-end pressure that arise because of them, and contrast these results with those calculated using a white-noise assumption.

Author(s):  
G. Rossini ◽  
A. Caimi ◽  
A. Redaelli ◽  
E. Votta

AbstractA Finite Element workflow for the multiscale analysis of the aortic valve biomechanics was developed and applied to three physiological anatomies with the aim of describing the aortic valve interstitial cells biomechanical milieu in physiological conditions, capturing the effect of subject-specific and leaflet-specific anatomical features from the organ down to the cell scale. A mixed approach was used to transfer organ-scale information down to the cell-scale. Displacement data from the organ model were used to impose kinematic boundary conditions to the tissue model, while stress data from the latter were used to impose loading boundary conditions to the cell level. Peak of radial leaflet strains was correlated with leaflet extent variability at the organ scale, while circumferential leaflet strains varied over a narrow range of values regardless of leaflet extent. The dependency of leaflet biomechanics on the leaflet-specific anatomy observed at the organ length-scale is reflected, and to some extent emphasized, into the results obtained at the lower length-scales. At the tissue length-scale, the peak diastolic circumferential and radial stresses computed in the fibrosa correlated with the leaflet surface area. At the cell length-scale, the difference between the strains in two main directions, and between the respective relationships with the specific leaflet anatomy, was even more evident; cell strains in the radial direction varied over a relatively wide range ($$0.36-0.87$$ 0.36 - 0.87 ) with a strong correlation with the organ length-scale radial strain ($$R^{2}= 0.95$$ R 2 = 0.95 ); conversely, circumferential cell strains spanned a very narrow range ($$0.75-0.88$$ 0.75 - 0.88 ) showing no correlation with the circumferential strain at the organ level ($$R^{2}= 0.02$$ R 2 = 0.02 ). Within the proposed simulation framework, being able to account for the actual anatomical features of the aortic valve leaflets allowed to gain insight into their effect on the structural mechanics of the leaflets at all length-scales, down to the cell scale.


Soft Matter ◽  
2021 ◽  
Author(s):  
Abhik Samui ◽  
Julia M. Yeomans ◽  
Sumesh P. Thampi

Different flow regimes realised by a channel-confined active nematic have a characteristic length same as channel width. Flow structures exhibit the intrinsic length scale of the fluid only in the fully developed active turbulence regime.


1997 ◽  
Vol 352 (1361) ◽  
pp. 1589-1601 ◽  
Author(s):  
M. J. Keeling ◽  
I. Mezić ◽  
R. J. Hendry ◽  
J. McGlade ◽  
D. A. Rand

A technique of fluctuation analysis is introduced for the identification of characteristic length scales in spatial models, with similarities to the recently introduced methods using correlations. The identified length scale provides the optimal size to extract non-trivial large-scale behaviour in such models. The method is demonstrated for three biological models: genetic selection, plant competition and a complex marine system; the first two are coupled map lattices and the last one is a cellular automaton. These cover the three possibilities for asymptotic (long time) dynamics: fixation (the system converges to a fixed point); statistical fixation (the spatial statistics converge to fixed values); and complex statistical structure (the statistics do not converge to fixed values). The technique is shown to have an additional use in the identification of aggregation or dispersal at various scales. The method is rigorously justifiable in the cases when the system under analysis satisfies the FKG (Fortuin-Kasteleyn-Ginibre) property and has a fast decay of correlations. We also discuss the connection between the fluctuation analysis length scale and hydrodynamic limits methods to derive large scale equations for ecological models.


1998 ◽  
Vol 08 (PR8) ◽  
pp. Pr8-159-Pr8-166 ◽  
Author(s):  
S. Fouvry ◽  
Ph. Kapsa ◽  
F. Sidoroff ◽  
L. Vincent

Author(s):  
Thomas Foken ◽  
Michael Börngen

AbstractIt has been repeatedly assumed that Heinz Lettau found the Obukhov length in 1949 independently of Obukhov in 1946. However, it was not the characteristic length scale, the Obukhov length L, but the ratio of height and the Obukhov length (z/L), the Obukhov stability parameter, that he analyzed. Whether Lettau described the parameter z/L independently of Obukhov is investigated herein. Regardless of speculation about this, the significant contributions made by Lettau in the application of z/L merit this term being called the Obukhov–Lettau stability parameter in the future.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Mantas Povilaitis ◽  
Egidijus Urbonavičius

An issue of the stratified atmospheres in the containments of nuclear power plants is still unresolved; different experiments are performed in the test facilities like TOSQAN and MISTRA. MASPn experiments belong to the spray benchmark, initiated in the containment atmosphere mixing work package of the SARNET network. The benchmark consisted of MASP0, MASP1 and MASP2 experiments. Only the measured depressurisation rates during MASPn were available for the comparison with calculations. When the analysis was performed, the boundary conditions were not clearly defined therefore most of the attention was concentrated on MASP0 simulation in order to develop the nodalisation scheme and define the initial and boundary conditions. After achieving acceptable agreement with measured depressurisation rate, simulations of MASP1 and MASP2 experiments were performed to check the influence of sprays. The paper presents developed nodalisation scheme of MISTRA for the COCOSYS code and the results of analyses. In the performed analyses, several parameters were considered: initial conditions, loss coefficient of the junctions, initial gradients of temperature and steam volume fraction, and characteristic length of structures. Parametric analysis shows that in the simulation the heat losses through the external walls behind the lower condenser installed in the MISTRA facility determine the long-term depressurisation rate.


Author(s):  
Richard Pichler ◽  
Richard D. Sandberg ◽  
Gregory Laskowski ◽  
Vittorio Michelassi

The effect of inflow turbulence intensity and turbulence length scales have been studied for a linear high-pressure turbine vane cascade at Reis = 590,000 and Mis = 0.93, using highly resolved compressible large-eddy simulations employing the WALE turbulence model. The turbulence intensity was varied between 6% and 20% while values of the turbulence length scales were prescribed between 5% and 20% of axial chord. The analysis focused on characterizing the inlet turbulence and quantifying the effect of the inlet turbulence variations on the vane boundary layers, in particular on the heat flux to the blade. The transition location on the suction side of the vane was found to be highly sensitive to both turbulence intensity and length scale, with the case with turbulence intensity 20% and 20% length scale showing by far the earliest onset of transition and much higher levels of heat flux over the entire vane. It was also found that the transition process was highly intermittent and local, with spanwise parts of the suction side surface of the vane remaining laminar all the way to the trailing edge even for high turbulence intensity cases.


Author(s):  
Timothy W. Repko ◽  
Andrew C. Nix ◽  
James D. Heidmann

An advanced, high-effectiveness film-cooling design, the anti-vortex hole (AVH) has been investigated by several research groups and shown to mitigate or counter the vorticity generated by conventional holes and increase film effectiveness at high blowing ratios and low freestream turbulence levels. [1, 2] The effects of increased turbulence on the AVH geometry were previously investigated and presented by researchers at West Virginia University (WVU), in collaboration with NASA, in a preliminary CFD study [3] on the film effectiveness and net heat flux reduction (NHFR) at high blowing ratio and elevated freestream turbulence levels for the adjacent AVH. The current paper presents the results of an extended numerical parametric study, which attempts to separate the effects of turbulence intensity and length-scale on film cooling effectiveness of the AVH. In the extended study, higher freestream turbulence intensity and larger scale cases were investigated with turbulence intensities of 5, 10 and 20% and length scales based on cooling hole diameter of Λx/dm = 1, 3 and 6. Increasing turbulence intensity was shown to increase the centerline, span-averaged and area-averaged adiabatic film cooling effectiveness. Larger turbulent length scales were shown to have little to no effect on the centerline, span-averaged and area-averaged adiabatic film-cooling effectiveness at lower turbulence levels, but slightly increased effect at the highest turbulence levels investigated.


Sign in / Sign up

Export Citation Format

Share Document