On the compressible Taylor–Couette problem

2007 ◽  
Vol 588 ◽  
pp. 59-74 ◽  
Author(s):  
A. MANELA ◽  
I. FRANKEL

We consider the linear temporal stability of a Couette flow of a Maxwell gas within the gap between a rotating inner cylinder and a concentric stationary outer cylinder both maintained at the same temperature. The neutral curve is obtained for arbitrary Mach (Ma) and arbitrarily small Knudsen (Kn) numbers by use of a ‘slip-flow’ continuum model and is verified via comparison to direct simulation Monte Carlo results. At subsonic rotation speeds we find, for the radial ratios considered here, that the neutral curve nearly coincides with the constant-Reynolds-number curve pertaining to the critical value for the onset of instability in the corresponding incompressible-flow problem. With increasing Mach number, transition is deferred to larger Reynolds numbers. It is remarkable that for a fixed Reynolds number, instability is always eventually suppressed beyond some supersonic rotation speed. To clarify this we examine the variation with increasing (Ma) of the reference Couette flow and analyse the narrow-gap limit of the compressible TC problem. The results of these suggest that, as in the incompressible problem, the onset of instability at supersonic speeds is still essentially determined through the balance of inertial and viscous-dissipative effects. Suppression of instability is brought about by increased rates of dissipation associated with the elevated bulk-fluid temperatures occurring at supersonic speeds. A useful approximation is obtained for the neutral curve throughout the entire range of Mach numbers by an adaptation of the familiar incompressible stability criteria with the critical Reynolds (or Taylor) numbers now based on average fluid properties. The narrow-gap analysis further indicates that the resulting approximate neutral curve obtained in the (Ma, Kn) plane consists of two branches: (i) the subsonic part corresponding to a constant ratio (Ma/Kn) (i.e. a constant critical Reynolds number) and (ii) a supersonic branch which at large Ma values corresponds to a constant product Ma Kn. Finally, our analysis helps to resolve some conflicting views in the literature regarding apparently destabilizing compressibility effects.

2012 ◽  
Vol 694 ◽  
pp. 29-49 ◽  
Author(s):  
A. Manela ◽  
J. Zhang

AbstractWe extend the stability analysis of incompressible Kolmogorov flow, induced by a spatially periodic external force in an unbounded domain, to a compressible hard-sphere gas confined between two parallel isothermal walls. The two-dimensional problem is studied by means of temporal stability analysis of a ‘slip flow’ continuum-limit model and the direct simulation Monte Carlo (DSMC) method. The neutral curve is obtained in terms of the Reynolds ($\mathit{Re}$) and Knudsen ($\mathit{Kn}$) numbers, for a given non-dimensional wavenumber $(2\lrm{\pi} n)$ of the external force. In the incompressible limit ($\mathit{Kn}, \mathit{Kn}\hspace{0.167em} \mathit{Re}\ensuremath{\rightarrow} 0$), the problem is governed only by the Reynolds number, and our neutral curve coincides with the critical Reynolds number (${\mathit{Re}}_{cr} $) calculated in previous incompressible analyses. Fluid compressibility ($\mathit{Kn}, \mathit{Kn}\hspace{0.167em} \mathit{Re}\not = 0$) affects the flow field through the generation of viscous dissipation, coupling flow shear rates with irreversible heat production, and resulting in elevated bulk-fluid temperatures. This mechanism has a stabilizing effect on the system, thus increasing ${\mathit{Re}}_{cr} $ (compared to its incompressible value) with increasing $\mathit{Kn}$. When compressibility effects become strong enough, transition to instability changes type from ‘exchange of stabilities’ to ‘overstability’, and perturbations are dominated by fluctuations in the thermodynamic fields. Most remarkably, compressibility confines the instability to small ($O(1{0}^{\ensuremath{-} 3} )$) Knudsen numbers, above which the Kolmogorov flow is stable for all $\mathit{Re}$. Good agreement is found between ‘slip flow’ and DSMC analyses, suggesting the former as a useful alternative in studying the effects of various parameters on the onset of instability, particularly in the context of small Knudsen numbers considered.


2014 ◽  
Vol 761 ◽  
pp. 1-26 ◽  
Author(s):  
Rodolfo Ostilla-Mónico ◽  
Erwin P. van der Poel ◽  
Roberto Verzicco ◽  
Siegfried Grossmann ◽  
Detlef Lohse

AbstractDirect numerical simulations of Taylor–Couette flow, i.e. the flow between two coaxial and independently rotating cylinders, were performed. Shear Reynolds numbers of up to $3\times 10^{5}$, corresponding to Taylor numbers of $\mathit{Ta}=4.6\times 10^{10}$, were reached. Effective scaling laws for the torque are presented. The transition to the ultimate regime, in which asymptotic scaling laws (with logarithmic corrections) for the torque are expected to hold up to arbitrarily high driving, is analysed for different radius ratios, different aspect ratios and different rotation ratios. It is shown that the transition is approximately independent of the aspect and rotation ratios, but depends significantly on the radius ratio. We furthermore calculate the local angular velocity profiles and visualize different flow regimes that depend both on the shearing of the flow, and the Coriolis force originating from the outer cylinder rotation. Two main regimes are distinguished, based on the magnitude of the Coriolis force, namely the co-rotating and weakly counter-rotating regime dominated by Rayleigh-unstable regions, and the strongly counter-rotating regime where a mixture of Rayleigh-stable and Rayleigh-unstable regions exist. Furthermore, an analogy between radius ratio and outer-cylinder rotation is revealed, namely that smaller gaps behave like a wider gap with co-rotating cylinders, and that wider gaps behave like smaller gaps with weakly counter-rotating cylinders. Finally, the effect of the aspect ratio on the effective torque versus Taylor number scaling is analysed and it is shown that different branches of the torque-versus-Taylor relationships associated to different aspect ratios are found to cross within 15 % of the Reynolds number associated to the transition to the ultimate regime. The paper culminates in phase diagram in the inner versus outer Reynolds number parameter space and in the Taylor versus inverse Rossby number parameter space, which can be seen as the extension of the Andereck et al. (J. Fluid Mech., vol. 164, 1986, pp. 155–183) phase diagram towards the ultimate regime.


2017 ◽  
Vol 831 ◽  
pp. 330-357 ◽  
Author(s):  
A. Froitzheim ◽  
S. Merbold ◽  
C. Egbers

Fully turbulent Taylor–Couette flow between independently rotating cylinders is investigated experimentally in a wide-gap configuration ($\unicode[STIX]{x1D702}=0.5$) around the maximum transport of angular momentum. In that regime turbulent Taylor vortices are present inside the gap, leading to a pronounced axial dependence of the flow. To account for this dependence, we measure the radial and azimuthal velocity components in horizontal planes at different cylinder heights using particle image velocimetry. The ratio of angular velocities of the cylinder walls $\unicode[STIX]{x1D707}$, where the torque maximum appears, is located in the low counter-rotating regime ($\unicode[STIX]{x1D707}_{max}(\unicode[STIX]{x1D702}=0.5)=-0.2$). This point coincides with the smallest radial gradient of angular velocity in the bulk and the detachment of the neutral surface from the outer cylinder wall, where the azimuthal velocity component vanishes. The structure of the flow is further revealed by decomposing the flow field into its large-scale and turbulent contributions. Applying this decomposition to the kinetic energy, we can analyse the formation process of the turbulent Taylor vortices in more detail. Starting at pure inner cylinder rotation, the vortices are formed and strengthened until $\unicode[STIX]{x1D707}=-0.2$ quite continuously, while they break down rapidly for higher counter-rotation. The same picture is shown by the decomposed Nusselt number, and the range of rotation ratios, where turbulent Taylor vortices can exist, shrinks strongly in comparison to investigations at much lower shear Reynolds numbers. Moreover, we analyse the scaling of the Nusselt number and the wind Reynolds number with the shear Reynolds number, finding a communal transition at approximately $Re_{S}\approx 10^{5}$ from classical to ultimate turbulence with a transitional regime lasting at least up to $Re_{S}\geqslant 2\times 10^{5}$. Including the axial dispersion of the flow into the calculation of the wind amplitude, we can also investigate the wind Reynolds number as a function of the rotation ratio $\unicode[STIX]{x1D707}$, finding a maximum in the low counter-rotating regime slightly larger than $\unicode[STIX]{x1D707}_{max}$. Based on our study it becomes clear that the investigation of counter-rotating Taylor–Couette flows strongly requires an axial exploration of the flow.


1977 ◽  
Vol 79 (3) ◽  
pp. 535-552 ◽  
Author(s):  
Peter J. Riley ◽  
Robert L. Laurence

The stability of circular Couette flow when the outer cylinder is at rest and the inner is modulated both with and without a mean shear is examined in the narrow-gap limit. Disturbances are assumed to be axisymmetric. Two criteria are used to determine conditions for stability; the first requires that the motion be strongly stable, the second only that disturbances of arbitrary initial energy decay from cycle to cycle. The behaviour of critical parameters as a function of frequency is similar for the linear and the energy analysis. The range of Reynolds numbers bounded above by certain instability and below by conditional nonlinear stability is enlarged by modulation.


Author(s):  
Rishi Kumar ◽  
Andrew Walton

The nonlinear stability of annular Poiseuille–Couette flow through a cylindrical annulus subjected to axisymmetric and helical disturbances is analysed theoretically at asymptotically large Reynolds number R based on the radius of the outer cylinder and the constant axial pressure gradient applied. The inner cylinder moves with a prescribed positive or negative velocity in the axial direction. A distinguished scaling for the disturbance size Δ =  O ( R −4/9 ) is identified at which the jump in vorticity across the fully nonlinear critical layer is in tune with that induced across a near-wall shear layer. The disturbance propagates at close to the velocity of the inner cylinder and possesses a wavelength comparable to the radius of the outer cylinder. The dynamics of the critical layer, shear layer and the Stokes layer adjacent to the stationary wall are discussed in detail. In the majority of the pipe, the disturbance is governed predominantly by inviscid dynamics with the pressure perturbation satisfying a form of Rayleigh’s equation. For a radius ratio δ in the range 0 <  δ  < 1 and a positive sliding velocity V , a numerical solution of the Rayleigh equation exists for sliding velocities in the range 0 <  V  < 1 −  δ 2  + 2 δ 2 ln δ , whereas if V  < 0, solutions exist for 1 −  δ 2  + 2ln δ  <  V  < 0. The amplitude equations for both these situations are derived analytically, and we further find that the corresponding asymptotic structures break down when the maximum value of the basic flow becomes located at the inner and outer walls, respectively.


Author(s):  
Sang-Hyuk Lee ◽  
Hyoung-Bum Kim

Taylor-Couette flow has been studied extensively and lots of variables which affect the flow instability are being reported. The wall geometry effect of Taylor-Couette flow, however, has been less studied. In this study, we investigated the effect of axial slit of outer cylinder. This kind of configuration can be easily seen in rotating machinery. Particle image velocimetry method was used to measure the velocity fields in longitudinal and latitudinal planes. The index matching method was used to avoid light refraction. The velocity fields between the slit and plain model which has the smooth wall were compared. From the experiments, both models have the same flow mode below Re = 143. The transition from circular Couette flow to plain Taylor vortex flow began at Re = 103, and the next transition to wavy vortex flow occurred at 124. The effect of slit wall appeared when the Reynolds number is larger than Re = 143. Above this Reynolds number, there was no stable mode and plain and wavy Taylor vortex flow randomly appeared.


1965 ◽  
Vol 21 (3) ◽  
pp. 385-425 ◽  
Author(s):  
Donald Coles

Two distinct kinds of transition have been identified in Couette flow between concentric rotating cylinders. The first, which will be called transition by spectral evolution, is characteristic of the motion when the inner cylinder has a larger angular velocity than the outer one. As the speed increases, a succession of secondary modes is excited; the first is the Taylor motion (periodic in the axial direction), and the second is a pattern of travelling waves (periodic in the circumferential direction). Higher modes correspond to harmonics of the two fundamental frequencies of the doubly-periodic flow. This kind of transition may be viewed as a cascade process in which energy is transferred by non-linear interactions through a discrete spectrum to progressively higher frequencies in a two-dimensional wave-number space. At sufficiently large Reynolds numbers the discrete spectrum changes gradually and reversibly to a continuous one by broadening of the initially sharp spectral lines.These periodic flows are not uniquely determined by the Reynolds number. For the case of the inner cylinder rotating and the outer cylinder at rest, as many as 20 or 25 different states (each state being defined by the number of Taylor cells and the number of tangential waves) have been observed at a given speed. As the speed changes, theso states replace each other in a repeatable but irreversible pattern of transitions; vortices appear or disappear in pairs, and waves are added or subtracted. More than 70 such transitions have been found in the speed range up to about 10 times the first critical speed. Regardless of the state, however, the angular velocity of the tangential waves is nearly constant at 0.34 times the angular velocity of the inner cylinder.The second kind of transition, which will be called catastrophic transition, is characteristic of the motion when the outer cylinder has a larger angular velocity than the inner one. At a fixed Reynolds number, the fluid is divided into distinct regions of laminar and turbulent flow, and these regions are separated by interfacial surfaces which may be propagating in either direction. Under some conditions the turbulent regions may appear and disappear in a random way; under other conditions they may form quite regular patterns. One common pattern of particular interest is a spiral band of turbulence which rotates at very nearly the mean angular velocity of the two walls without any change in shape except possibly an occasional shift from a right-hand to a left-hand pattern. One example of this spiral turbulence is being studied in some detail in an attempt to clarify the role played in transition by interfaces and intermittency.


2009 ◽  
Author(s):  
Sheng Wang ◽  
Kangbin Lei ◽  
Xilian Luo ◽  
Kiwamu Kase ◽  
Elia Merzari ◽  
...  

The cylindrical Couette flow of a rarefied gas from macro- to micro-scales, in the case where the inner cylinder is rotating whereas the outer cylinder is at rest, is extensively investigated by direct simulation Monte Carlo (DSMC) code incorporated with a Volume-CAD software. The generalized soft sphere (GSS) model is applied to an intermolecular collision calculation. The diffuse reflection model and Cercignani-Lampis-Lord (CLL) model are used to model the molecule-surface interaction by considering the accommodation coefficients on inner cylinder (ACI hereafter) and outer cylinder (ACO hereafter) separately. The contents in this paper include following three aspects: I the flow field characteristics and force and torque on inner cylinder for eccentric Couette flow between different scales with same non-dimensional parameters (accommodation coefficients, eccentricity-clearance ratio, Knudsen number and Reynolds number) are compared; the flow field characteristics for different scales are same; with the increase of the scale, the total force on the inner cylinder increases slightly, while the torque is proportional to the scale; II the velocity profiles in concentric Couette flow under different non-dimensional parameters are studied; the result shows that the phenomenon of inverted velocity profile in the concentric Couette flow is only induced by a smooth outer cylinder; the non-dimensional tangential velocity, as well as its gradient is high at low Reynolds number; the Knudsen number has great impact on the tangential velocity profile, and the velocity profile may not be inverted in the case of low Knudsen number; III the flow field characteristics in eccentric Couette flow under different non-dimensional parameters are obtained; the recirculation zone may not appear when Knudsen number is high; the position of its center may be different depending on Reynolds number; with the increase of Reynolds number, the compressibility effect becomes important; stratified distribution of the density becomes obvious at low Knudsen number.


2016 ◽  
Vol 808 ◽  
Author(s):  
Kengo Deguchi

An asymptotic theory is developed for the linear stability curve of rapidly rotating Taylor–Couette flow. The analytic curve obtained by the theory excellently explains the limiting Navier–Stokes stability result for general disturbances. When the cylinders are corotating, the asymptotic theory describes the gap between the neutral curve and the Rayleigh stability criterion. For the case when the cylinders are counter-rotating, it is found that, along the stability boundary, the Reynolds number based on the inner cylinder speed is proportional to that based on the outer cylinder speed to the power of $3/5$.


Author(s):  
Dong Liu ◽  
Hyoung-Bum Kim

The effect of the temperature gradient and the presence of slits in the outer cylinders involved in creating a Taylor-Couette flow was investigated by measuring the velocity field inside the gap simultaneously. The slits were azimuthally located along the inner wall of outer cylinder and the number of slits was 18. The results showed that the buoyant force due to the temperature gradient clearly generated the helical flow when the rotating Reynolds number is small. For the plain model, the transition to turbulent Taylor vortex flow is not affected by the temperature gradient considered in this study. In addition, the transition process of 18-slit model was accelerated due to the slit wall. As the temperature gradient became larger, the critical Reynolds number of the transition process decreased.


Sign in / Sign up

Export Citation Format

Share Document