Large-amplitude compression waves in an adiabatic two-fluid model of a collision-free plasma

1962 ◽  
Vol 14 (3) ◽  
pp. 369-384 ◽  
Author(s):  
K. W. Morton

The development of large amplitude compression waves in a collision-free plasma is studied by considering the motion of a plane piston into a uniform stationary plasma containing a magnetic field parallel to the plane of the piston. The adiabatic two-fluid equations are solved by finite-difference methods and the form of the waves after a long time is compared with the possible steady-state solutions.A generalized discontinuous solution of the steady-state equations is found for sufficiently high Mach numbers. At the highest Mach numbers this leads to a constant state at the piston; while at lower speeds a wave train results whose amplitude increases as the speed decreases. In each of these cases the numerical solutions of the time-dependent equations converge rapidly to the steady-state solutions. At still lower speeds, where the solitary-wave solution exists, the situation is less clear.

1974 ◽  
Vol 65 (4) ◽  
pp. 711-734 ◽  
Author(s):  
H. J. Lugt ◽  
H. J. Haussling

Numerical solutions for laminar incompressible fluid flows past an abruptly started elliptic cylinder at 45° incidence are presented. Various finite-difference schemes for the stream-function/vorticity formulation are used and their merits briefly discussed. Almost steady-state solutions are obtained forRe= 15 and 30, whereas forRe= 200 a Kármán vortex street develops. The transient period from the start to the steady or quasi-steady state is investigated in terms of patterns of streamlines and lines of constant vorticity and drag, lift and moment coefficients.


2004 ◽  
Vol 50 (171) ◽  
pp. 485-491 ◽  
Author(s):  
Antoine Pralong ◽  
Martin Funk

AbstractA level-set method is proposed for modeling the evolution of a glacier surface subject to a prescribed mass balance. This leads to a simple and versatile approach for computing the evolution of glaciers: the description of vertical fronts and overriding phenomena presents no difficulties, topological changes are handled naturally and steady-state solutions can be calculated without integration over time. A numerical algorithm is put forth as a means of solving the proposed model of glacier surface evolution. It is evaluated by comparing different numerical solutions of the model with analytical and published numerical solutions. The level-set method appears to be a reliable approach for dealing with different glaciological problems.


Author(s):  
J. Falzarano ◽  
R. Kota ◽  
I. Esparza

Abstract For ships, rolling motion is the most critical due to the possibility of capsizing. In a regular (periodic) sea, if no bounded steady state solutions exist, then capsizing may be imminent. Determining for exactly which wave amplitude and frequency the steady-state solutions disappear or become unstable is of great practical importance. In previous works (Falzarano, Esparza, and Taz Ul Mulk, 1994) and abstracted presentations (Falzarano, 1993), the global transient dynamics of large amplitude ship rolling motion was studied. The effect on the steady-state solutions of changing wave frequency for a fixed wave amplitudes was studied. It was shown how the in-phase and out-of-phase solutions evolve as the frequency passes through the linear natural frequency. For small wave amplitudes (external forcing) there exists a single steady-state throughout the frequency range, for moderate wave amplitudes there exists a frequency range where multiple steady state harmonic solutions exists. As the wave amplitude was increased further there existed a frequency range where no steady-state harmonic solution existed. In the present work, the very large amplitude ship rolling motion in the region where no steady-state solutions exist will be studied in more detail. Moreover, the mechanisms (bifurcations) that cause this type of behavior to evolve from more simple behavior will be studied using a combination of both frequency response curves and Poincaré maps. It is expected that global chaotic bifurcations such as those previously described (e.g., Thompson and Stewart, 1989) will be identified.


1973 ◽  
Vol 59 (2) ◽  
pp. 337-368 ◽  
Author(s):  
J. S. Allen

Numerical solutions of finite-difference approximations to the Navier–Stokes equations have been obtained for the axisymmetric motion of a Boussinesq liquid in a rigidly bounded rotating annulus. For most of the cases studied, a temperature difference is maintained between the top and bottom surfaces such that essentially a basic stable density stratification is imposed on the fluid. The side walls are thermally insulated and the motion is driven by a differential rotation of the top surface. Approximate steady-state solutions are obtained for various values of the Rossby number ε and the stratification parameter S = N2/Ω2, where N is the Brunt–Väisälä frequency and Ω is the rotational frequency. The changes in the flow field with the variation of these parameters is studied. Particular attention is given to an investigation of the meridional, or up welling, circulation and its dependence on the stratification parameter. The effects on the flow of different boundary conditions, such as an applied stress driving, specified temperature at the side walls and an applied heat flux at the top and bottom surfaces, are also investigated.


1965 ◽  
Vol 21 (4) ◽  
pp. 623-633 ◽  
Author(s):  
Carl E. Pearson

The nature of the steady-state viscous flow between two large rotating disks has often been discussed, usually qualitatively, in the literature. Using a version of the numerical method described in the preceding paper (Pearson 1965), digital computer solutions for the time-dependent case are obtained (steady-state solutions are then obtainable as limiting cases for large times). Solutions are given for impulsively started disks, and for counter-rotating disks. Of interest is the fact that, at high Reynolds numbers, the solution for the latter problem is unsymmetrical; moreover, the main body of the fluid rotates at a higher angular velocity than that of either disk.


2016 ◽  
Vol 685 ◽  
pp. 114-118 ◽  
Author(s):  
Leonid Minkov ◽  
Ernst R. Shrager ◽  
Aleksander E. Kiryushkin

Two approaches for simulating the burning surface in gas dynamics by means boundary conditions and right sides in the equations involving Dirac delta function are discussed. A comparison of numerical steady-state solutions and the exact ones in one-dimensional approximation is performed for two approaches. It is shown that the numerical solutions obtained with the finite-difference scheme of first order accuracy on the base of two considered approaches converge to each other when the mesh refinement is applied. The numerical solution for the steady state problem coincides with the analytical one, if the pressure at the boundary cell face is set equal to the pressure in the center of the boundary cell.


Author(s):  
Matthew P Cartmell ◽  
Ivana Kovacic ◽  
Miodrag Zukovic

This article investigates a four-degree-of-freedom mechanical model comprising a horizontal bar onto which two identical pendula are fitted. The bar is suspended from a pair of springs and the left-hand-side pendulum is excited by means of a harmonic torque. The article shows that autoparametric interaction is possible by means of typical external and internal resonance conditions involving the system natural frequencies and excitation frequency, yielding an interesting case when the right-hand-side pendulum does not oscillate, but stays at rest. It is demonstrated that applying the standard method of multiple scales to this system leads to slow-time and subsequently steady-state equations representative of periodic responses; however, in common with previous findings reported in the literature for systems of four or more interacting modes, global solutions are not obtainable. This article then concentrates on discussing a proposed new modification to the method of multiple scales in which the effect of detuning is accentuated within the zeroth-order perturbation equations and it is then demonstrated that the numerical solutions from this approach to multiple scales yield results that are virtually indistinguishable from those obtained from direct numerical integration of the equations of motion. It is also shown that the algebraic structure of the steady-state solutions for the modified multiple scales analysis is identical to that obtained from a harmonic balance analysis for the case when the right-hand-side pendulum is decoupled. This particular decoupling case is prominent from examination of both the original equations of motion and the steady-state solutions irrespective of the analysis undertaken. This article concludes by showing that the translation and rotation of the bar are, in this particular case, mutually coupled and opposite in sign.


2021 ◽  
Vol 16 ◽  
pp. 23
Author(s):  
Thierry Mignon ◽  
Simon Mendez

The dynamics of a single red blood cell in shear flow is a fluid–structure interaction problem that yields a tremendous richness of behaviors, as a function of the parameters of the problem. A low shear rates, the deformations of the red blood cell remain small and low-order models have been developed, predicting the orientation of the cell and the membrane circulation along time. They reproduce the dynamics observed in experiments and in simulations, but they do not simplify the problem enough to enable simple interpretations of the phenomena. In a process of exploring the red blood cell dynamics at low shear rates, an existing model constituted of 5 nonlinear ordinary differential equations is rewritten using quaternions to parametrize the rotations of the red blood cell. Techniques from algebraic geometry are then used to determine the steady-state solutions of the problems. These solutions are relevant to a particular regime where the red blood cell reaches a constant inclination angle, with its membrane rotating around it, and referred to as frisbee motion. Comparing the numerical solutions of the model to the steady-state solutions allows a better understanding of the transition between the most emblematic motions of red blood cells, flipping and tank-treading.


1960 ◽  
Vol 15 (2) ◽  
pp. 215-219 ◽  
Author(s):  
William S. Yamamoto

Continuous respiratory CO2 gas exchange is simulated theoretically by means of a suitably constructed dilution equation of the form (See PDF) where C is instantaneous concentration, Q quantity flow, and V volume flow. When such an equation is constrained in its numerical solutions to yield inflow-outflow equality for CO2 in the steady state, solutions for CO2 as a time series are found to differ according to whether the site of entry of CO2 is entirely by venous blood or is also by inspired CO2. In the case of entry via the venous blood, increasing CO2 is eliminated while keeping mean CO2 constant with increasing fluctuations about this mean. In the case of entry via the lung, increasing CO2 is eliminated by raising the mean and at the same time oscillations diminish. Submitted on August 13, 1959


Sign in / Sign up

Export Citation Format

Share Document