Analytical and numerical studies of the structure of steady separated flows

1966 ◽  
Vol 24 (1) ◽  
pp. 113-151 ◽  
Author(s):  
Odus R. Burggraf

The viscous structure of a separated eddy is investigated for two cases of simplified geometry. In § 1, an analytical solution, based on a linearized model, is obtained for an eddy bounded by a circular streamline. This solution reveals the flow development from a completely viscous eddy at low Reynolds number to an inviscid rotational core at high Reynolds number, in the manner envisaged by Batchelor. Quantitatively, the solution shows that a significant inviscid core exists for a Reynolds number greater than 100. At low Reynolds number the vortex centre shifts in the direction of the boundary velocity until the inviscid core develops; at large Reynolds number, the inviscid vortex core is symmetric about the centre of the circle, except for the effect of the boundary-layer displacement-thickness. Special results are obtained for velocity profiles, skin-friction distribution, and total power dissipation in the eddy. In addition, results of the method of inner and outer expansions are compared with the complete solution, indicating that expansions of this type give valid results for separated eddies at Reynolds numbers greater than about 25 to 50. The validity of the linear analysis as a description of separated eddies is confirmed to a surprising degree by numerical solutions of the full Navier–Stokes equations for an eddy in a square cavity driven by a moving boundary at the top. These solutions were carried out by a relaxation procedure on a high-speed digital computer, and are described in § 2. Results are presented for Reynolds numbers from 0 to 400 in the form of contour plots of stream function, vorticity, and total pressure. At the higher values of Reynolds number, an inviscid core develops, but secondary eddies are present in the bottom corners of the square at all Reynolds numbers. Solutions of the energy equation were obtained also, and isotherms and wall heat-flux distributions are presented graphically.

2013 ◽  
Vol 736 ◽  
pp. 414-443 ◽  
Author(s):  
Y. Ueda ◽  
T. Kida ◽  
M. Iguchi

AbstractThe long-time viscous flow about two identical rotating circular cylinders in a side-by-side arrangement is investigated using an adaptive numerical scheme based on the vortex method. The Stokes solution of the steady flow about the two-cylinder cluster produces a uniform stream in the far field, which is the so-called Jeffery’s paradox. The present work first addresses the validation of the vortex method for a low-Reynolds-number computation. The unsteady flow past an abruptly started purely rotating circular cylinder is therefore computed and compared with an exact solution to the Navier–Stokes equations. The steady state is then found to be obtained for $t\gg 1$ with ${\mathit{Re}}_{\omega } {r}^{2} \ll t$, where the characteristic length and velocity are respectively normalized with the radius ${a}_{1} $ of the circular cylinder and the circumferential velocity ${\Omega }_{1} {a}_{1} $. Then, the influence of the Reynolds number ${\mathit{Re}}_{\omega } = { a}_{1}^{2} {\Omega }_{1} / \nu $ about the two-cylinder cluster is investigated in the range $0. 125\leqslant {\mathit{Re}}_{\omega } \leqslant 40$. The convection influence forms a pair of circulations (called self-induced closed streamlines) ahead of the cylinders to alter the symmetry of the streamline whereas the low-Reynolds-number computation (${\mathit{Re}}_{\omega } = 0. 125$) reaches the steady regime in a proper inner domain. The self-induced closed streamline is formed at far field due to the boundary condition being zero at infinity. When the two-cylinder cluster is immersed in a uniform flow, which is equivalent to Jeffery’s solution, the streamline behaves like excellent Jeffery’s flow at ${\mathit{Re}}_{\omega } = 1. 25$ (although the drag force is almost zero). On the other hand, the influence of the gap spacing between the cylinders is also investigated and it is shown that there are two kinds of flow regimes including Jeffery’s flow. At a proper distance from the cylinders, the self-induced far-field velocity, which is almost equivalent to Jeffery’s solution, is successfully observed in a two-cylinder arrangement.


2001 ◽  
Author(s):  
Miles Greiner ◽  
Paul F. Fischer ◽  
Henry Tufo

Abstract The effect of flow rate modulation on low Reynolds number heat transfer enhancement in a transversely grooved passage was numerically simulated using a two-dimensional spectral element technique. Simulations were performed at subcritical Reynolds numbers of Rem = 133 and 267, with 20% and 40% flow rate oscillations. The net pumping power required to modulate the flow was minimized as the forcing frequency approached the predicted natural frequency. However, mixing and heat transfer levels both increased as the natural frequency was approached. Oscillatory forcing in a grooved passage requires two orders of magnitude less pumping power than flat passage systems for the same heat transfer level. Hydrodynamic resonance appears to be an effective method of increasing heat transfer in low Reynolds number systems where pumping power is at a premium, such as micro heat transfer applications.


2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


Author(s):  
Patricia Streufert ◽  
Terry X. Yan ◽  
Mahdi G. Baygloo

Local turbulent convective heat transfer from a flat plate to a circular impinging air jet is numerically investigated. The jet-to-plate distance (L/D) effect on local heat transfer is the main focus of this study. The eddy viscosity V2F turbulence model is used with a nonuniform structured mesh. Reynolds-Averaged Navier-Stokes equations (RANS) and the energy equation are solved for axisymmetric, three-dimensional flow. The numerical solutions obtained are compared with published experimental data. Four jet-to-plate distances, (L/D = 2, 4, 6 and 10) and seven Reynolds numbers (Re = 7,000, 15,000, 23,000, 50,000, 70,000, 100,000 and 120,000) were parametrically studied. Local and average heat transfer results are analyzed and correlated with Reynolds number and the jet-to-plate distance. Results show that the numerical solutions matched experimental data best at low jet-to-plate distances and lower Reynolds numbers, decreasing in ability to accurately predict the heat transfer as jet-to-plate distance and Reynolds number was increased.


1976 ◽  
Vol 74 (4) ◽  
pp. 593-610 ◽  
Author(s):  
K. Hanjalić ◽  
B. E. Launder

The problem of closing the Reynolds-stress and dissipation-rate equations at low Reynolds numbers is considered, specific forms being suggested for the direct effects of viscosity on the various transport processes. By noting that the correlation coefficient$\overline{uv^2}/\overline{u^2}\overline{v^2} $is nearly constant over a considerable portion of the low-Reynolds-number region adjacent to a wall the closure is simplified to one requiring the solution of approximated transport equations for only the turbulent shear stress, the turbulent kinetic energy and the energy dissipation rate. Numerical solutions are presented for turbulent channel flow and sink flows at low Reynolds number as well as a case of a severely accelerated boundary layer in which the turbulent shear stress becomes negligible compared with the viscous stresses. Agreement with experiment is generally encouraging.


1998 ◽  
Vol 120 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Peter Gerlinger ◽  
Dieter Bru¨ggemann

A multigrid method for convergence acceleration is used for solving coupled fluid and turbulence transport equations. For turbulence closure a low-Reynolds-number q-ω turbulence model is employed, which requires very fine grids in the near wall regions. Due to the use of fine grids, convergence of most iterative solvers slows down, making the use of multigrid techniques especially attractive. However, special care has to be taken on the strong nonlinear turbulent source terms during restriction from fine to coarse grids. Due to the hyperbolic character of the governing equations in supersonic flows and the occurrence of shock waves, modifications to standard multigrid techniques are necessary. A simple and effective method is presented that enables the multigrid scheme to converge. A strong reduction in the required number of multigrid cycles and work units is achieved for different test cases, including a Mack 2 flow over a backward facing step.


2012 ◽  
Vol 707 ◽  
pp. 37-52 ◽  
Author(s):  
J. Sznitman ◽  
L. Guglielmini ◽  
D. Clifton ◽  
D. Scobee ◽  
H. A. Stone ◽  
...  

AbstractWe investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers ($\mathit{Re}\ll 1$) around a sharp $9{0}^{\ensuremath{\circ} } $ corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We find that, in the vicinity of the corner, the steady-state flow patterns bear the signature of a three-dimensional secondary flow, characterized by counter-rotating pairs of streamwise vortical structures and identified by the presence of non-vanishing transverse velocities (${u}_{z} $). These results are compared to numerical solutions of the incompressible flow as well as to predictions obtained, for a similar geometry, from an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011, pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and aspect ratio of the channel cross-section on the resulting secondary flows. This work represents, to the best of our knowledge, the first experimental characterization of the three-dimensional flow features arising in a pressure-driven flow near a corner at low Reynolds number.


2016 ◽  
Vol 28 (3) ◽  
pp. 273-285
Author(s):  
Katsuya Hirata ◽  
◽  
Ryo Nozawa ◽  
Shogo Kondo ◽  
Kazuki Onishi ◽  
...  

[abstFig src='/00280003/02.jpg' width=""300"" text='Iso-Q surfaces of very-slow flow past an iNACA0015' ] The airfoil is often used as the elemental device for flying/swimming robots, determining its basic performances. However, most of the aerodynamic characteristics of the airfoil have been investigated at Reynolds numbers Re’s more than 106. On the other hand, our knowledge is not enough in low Reynolds-number ranges, in spite of the recent miniaturisation of robots. In the present study, referring to our previous findings (Hirata et al., 2011), we numerically examine three kinds of high-performance airfoils proposed for very-low Reynolds numbers; namely, an iNACA0015 (the NACA0015 placed back to front), an FPBi (a flat plate blended with iNACA0015 as its upper half) and an FPBN (a flat plate blended with the NACA0015 as its upper half), in comparison with such basic airfoils as a NACA0015 and an FP (a flat plate), at a Reynolds number Re = 1.0 × 102 using two- and three-dimensional computations. As a result, the FPBi shows the best performance among the five kinds of airfoils.


2005 ◽  
Vol 57 (3) ◽  
pp. 116-120 ◽  
Author(s):  
Suat Canbazoğlu ◽  
Fazıl Canbulut

PurposeThe main objective of this study was to obtain the flow restricting capacity by determining their flow coefficients and to investigate the unsteady flow with low Reynolds number in the flow‐restricting devices such as orifices and capillary tubes having small diameters.Design/methodology/approachThere is an enormous literature on the flow of Newtonian fluids through capillaries and orifices particularly in many application fields of the mechanical and chemical engineering. But most of the experimental results in literature are given for steady flows at moderate and high Reynolds numbers (Re>500). In this study, the unsteady flow at low Reynolds number (10<Re<650) through flow‐restricting devices such as orifices and capillary tubes having very small diameters between 0.35 and 0.70 mm were experimentally investigated.FindingsThe capillary tubes have much more capillarity property with respect to equal diameter orifices. Increasing the ratio of capillary tube length to tube diameter and decreasing the ratio of orifice diameter to pipe diameter before orifice increase the throttling or restricting property of the orifices and the capillary tubes. The orifices can be preferred to the capillary tubes having the same diameter at the same system pressure for the hydraulic systems or circuits requiring small velocity variations. The capillary tubes provide higher pressure losses and they can be also used as hydraulic accumulators in hydraulic control devices to attenuate flow‐induced vibrations because of their large pressure coefficients. An important feature of the results obtained for capillary tubes and small orifices is that as the d/D for orifices increases and the L/d reduces for capillary tubes, higher values C are obtained and the transition from viscous to inertia‐controlled flow appears to take place at lower Reynolds numbers. This may be explained by the fact that for small orifices with high d/D ratios and for capillary tubes with small L/d ratios, the losses due to viscous shear are small. Another important feature of the results is that the least variations in C for small orifices and the higher variations in C for capillary tubes occur when the d/D and L/d ratios are smallest. This has favourable implications in hydraulic control devices since a constant value for the C may be assumed even at relatively low values of Re.Originality/valueTo the authors' knowledge, there is not enough information in the literature about the flow coefficients of unsteady flows through capillary tubes and small orifices at low Reynolds numbers. This paper fulfils this gap.


Author(s):  
Arun Kaushal ◽  
Gurpreet Singh ◽  
Subhash Chander ◽  
Anjan Ray

An experimental study has been conducted to determine the heat transfer characteristics for low Reynolds number turbulent swirling LPG/Air flames impinging on a flat surface. Effect of variation of Reynolds number (3000–7000), dimensionless separation distance (H/d = 1 to 6) and equivalence ratio (φ = 0.8 to 2) on heat transfer characteristics has been determined at constant swirl number of 4. Further, experiments were also conducted to investigate the effect of swirl number on heat transfer characteristics at Re = 7000, φ = 1.0 and H/d = 5. It has been concluded that the major drawback of flame impingement i.e., non-uniformity in the heating can be resolved by using swirling flames in place of non-swirling flames. With increase in Reynolds number the flame becomes longer and broader. Also, at higher Re the flame becomes noisy and violent because of the enhanced turbulences in the flame. A dip in the temperature was observed at the stagnation point at all Re and this dip was more significant at higher Re. At small separation distances (H/d = 1 and 2) and at large Reynolds numbers (Re = 7000) heating is comparatively more non-uniform because of close proximity of the visible reaction zone to the plate resulting in intense heating in the stagnation region. High average heat fluxes were obtained at low separation distances and at larger Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document