The effects of a corner on a propagating internal gravity wave

1970 ◽  
Vol 42 (2) ◽  
pp. 257-267 ◽  
Author(s):  
R. M. Robinson

A solution satisfying the usual radiation conditions is found to the problem of an internal wave propagating towards a corner. It is found that, far from the corner, and the characteristic emanating from the corner, the solution is asymptotically equivalent to the solution found by plane wave reflexions from an infinite wall. The present solution shows that, by imposing the radiation condition, a singularity predicted by the ray theory along the corner characteristic is absent. A further singularity in the present solution along the same characteristic is shown to be due to an inability of the usual linear internal wave equations to fully describe the motion. The solution is for restricted corner angles.

2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Bülent Yılmaz

The specific case of scattering of a plane wave by a two-layered penetrable eccentric circular cylinder has been considered and it is about the validity of the on surface radiation condition method and its applications to the scattering of a plane wave by a two-layered penetrable eccentric circular cylinder. The transformation of the problem of scattering by the eccentric circular cylinder to the problem of scattering by the concentric circular cylinder by using higher order radiation conditions, is observed. Numerical results presented the magnitude of the far field.


2019 ◽  
Vol 485 (4) ◽  
pp. 428-433
Author(s):  
V. G. Baydulov ◽  
P. A. Lesovskiy

For the symmetry group of internal-wave equations, the mechanical content of invariants and symmetry transformations is determined. The performed comparison makes it possible to construct expressions for analogs of momentum, angular momentum, energy, Lorentz transformations, and other characteristics of special relativity and electro-dynamics. The expressions for the Lagrange function are defined, and the conservation laws are derived. An analogy is drawn both in the case of the absence of sources and currents in the Maxwell equations and in their presence.


Author(s):  
David Romero-Abad ◽  
Jose Pedro Reyes Portales ◽  
Roberto Suárez-Córdova

Abstract The propagation of electromagnetic waves in a medium with electrical and magnetic anisotropy is a subject that is not usually handled in conventional optics and electromagnetism books. During this work, we try to give a pedagogical approach to the subject, using tools that are accessible to an average physics student. In this article, we obtain the Fresnel relation in a media with electromagnetic anisotropy, which corresponds to a quartic equation in the refraction index, assuming only that the principal axes of the electric and magnetic tensors coincide. Additionally, we find the geometric location related to the different situations the discriminant of the quartic equation provides. In order to illustrate our findings, we determine the refractive index together with the plane wave equations for certain values of the parameters that meet the established conditions. The target readers of the paper are students pursuing physics at the intermediate undergraduate level.


2019 ◽  
Vol 869 ◽  
Author(s):  
Boyu Fan ◽  
T. R. Akylas

An asymptotic model is developed for the parametric subharmonic instability (PSI) of finite-width nearly monochromatic internal gravity wave beams in the presence of a background constant horizontal mean flow. The subharmonic perturbations are taken to be short-scale wavepackets that may extract energy via resonant triad interactions while in contact with the underlying beam, and the mean flow is assumed to be small so that its advection effect on the perturbations is as important as dispersion, triad nonlinearity and viscous dissipation. In this ‘distinguished limit’, the perturbation dynamics are governed by the same evolution equations as those derived in Karimi & Akylas (J. Fluid Mech., vol. 757, 2014, pp. 381–402), except for a mean flow term that affects the group velocity of the perturbations and imposes an additional necessary condition for PSI, which stabilizes very short-scale perturbations. As a result, it is possible for a small amount of mean flow to weaken PSI dramatically.


1974 ◽  
Vol 63 (4) ◽  
pp. 801-825 ◽  
Author(s):  
Terrence M. Joyce

A laboratory study has been undertaken to measure the energy transfer from two surface waves to one internal gravity wave in a nonlinear, resonant interaction. The interacting waves form triads for which \[ \sigma_{1s} - \sigma_{2s} \pm\sigma_1 = 0\quad {\rm and}\quad \kappa_{1s} - \kappa_2s} \pm \kappa_I = 0; \] σj and κj being the frequency and wavenumber of the jth wave. Unlike previously published results involving single triplets of interacting waves, all waves here considered are standing waves. For both a diffuse, two-layer density field and a linearly increasing density with depth, the growth to steady state of a resonant internal wave is observed while two deep water surface eigen-modes are simultaneously forced by a paddle. Internal-wave amplitudes, phases and initial growth rates are compared with theoretical results derived assuming an arbitrary Boussinesq stratification, viscous dissipation and slight detuning of the internal wave. Inclusion of viscous dissipation and slight detuning permit predictions of steady-state amplitudes and phases as well as initial growth rates. Satisfactory agreement is found between predicted and measured amplitudes and phases. Results also suggest that the internal wave in a resonant triad can act as a catalyst, permitting appreciable energy transfer among surface waves.


1990 ◽  
Vol 112 (3) ◽  
pp. 177-180
Author(s):  
J. Li ◽  
H. Huang

The first and second-order radiation conditions for scattering waves in two and three-dimensional problems have been derived by virtue of a sequence of linear differential operators. The wave forces on a large circular cylinder are computed by using finite element methods with first and second-order radiation conditions and the Sommerfeld condition, respectively. The results show that an improvement in accuracy is achieved by employing the second-order radiation condition. The interior region in which finite elements are employed can be restricted to a much smaller one, compared with that using the Sommerfeld condition and the computing efforts and required storage in the computer are reduced.


1988 ◽  
Vol 55 (2) ◽  
pp. 398-404 ◽  
Author(s):  
John G. Harris

The wavefield radiated into an elastic half-space by an ultrasonic transducer, as well as the radiation admittance of the transducer coupled to the half-space, are studied. Two models for the transducer are used. In one an axisymmetric, Gaussian distribution of normal traction is imposed upon the surface, while in the other a uniform distribution of normal traction is imposed upon a circular region of the surface, leaving the remainder free of traction. To calculate the wavefield, each wave emitted by the transducer is expressed as a plane wave multiplied by an asymptotic power series in inverse powers of the aperture’s (scaled) radius. This reduces the wave equations satisfied by the compressional and shear potentials to their parabolic approximations. The approximations to the radiated waves are accurate at a depth where the wavefield remains well collimated.


Sign in / Sign up

Export Citation Format

Share Document