Resonantly interacting solitary waves

1977 ◽  
Vol 79 (1) ◽  
pp. 171-179 ◽  
Author(s):  
John W. Miles

Resonant (phase-locked) interactions among three obliquely oriented solitary waves are studied. It is shown that such interactions are associated with the parametric end points of the singular regime for interactions between two solitary waves. The latter include regular reflexion at a rigid wall, which is impossible for ϕi < (3α)½ (ϕ = angle of incidence, α = amplitude/depth [Lt ] 1), and it is shown that the observed phenomenon of ‘Mach reflexion’ can be described as a resonant interaction in this regime. The run-up at the wall is calculated as a function of ϕi/(3α)½ and is found to have a maximum value of 4αd for ϕi = (3α)½. This same resonant interaction also describes diffraction of a solitary wave at a corner of internal angle π − ψi, −(3α)½, and suggests that a solitary wave cannot turn through an angle in excess of (3α)½ at a convex corner without separating or otherwise losing its identity.

1980 ◽  
Vol 98 (2) ◽  
pp. 285-297 ◽  
Author(s):  
W. K. Melville

Miles’ (1977b) model of the Mach reflexion of a solitary wave by a vertical wall is tested by laboratory experiments. The model over-predicts the measured run-up at the wall, and no evidence of the predicted maximum was found. The measurements provide support for the predicted critical angle of incidence at which Mach reflexion is replaced by regular reflexion. It is shown that mass and energy conservation determine the length of the reflected wave in Miles’ model and that this is not consistent with momentum conservation in the neighbourhood of the end point of the reflected wave. It is suggested that the discrepancy between the measurements and the model may result from this failure of the model.


2007 ◽  
Vol 01 (03) ◽  
pp. 257-272 ◽  
Author(s):  
KAO-SHU HWANG ◽  
YU-HSUAN CHANG ◽  
HWUNG-HWENG HWUNG ◽  
YI-SYUAN LI

The evolution and run-up of breaking solitary waves on plane beaches are investigated in this paper. A series of large-scale experiments were conducted in the SUPER TANK of Tainan Hydraulics Laboratory with three plane beaches of slope 0.05, 0.025 and 0.017 (1:20, 1:40 and 1:60). Solitary waves of which relative wave heights, H/h0, ranged from 0.03 to 0.31 were generated by two types of wave-board displacement trajectory: the ramp-trajectory and the solitary-wave trajectory proposed by Goring (1979). Experimental results show that under the same relative wave height, the waveforms produced by the two generation procedures becomes noticeably different as the waves propagate prior to the breaking point. Meanwhile, under the same relative wave height, the larger the constant water depth is, the larger the dimensionless run-up heights would be. Scale effects associated with the breaking process are discussed.


2011 ◽  
Vol 8 (2) ◽  
pp. 10 ◽  
Author(s):  
K. Smida ◽  
H. Lamloumi ◽  
K. Maalel ◽  
Z. Hafsia

 A new numerical wave generation method is used to investigate the head-on collision of two solitary waves. The reflection at vertical wall of a solitary wave is also presented. The originality of this model, based on the Navier-Stokes equations, is the specification of an internal inlet velocity, defined as a source line within the computational domain for the generation of these non linear waves. This model was successfully implemented in the PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series) code. The collision of two counter-propagating solitary waves is similar to the interaction of a soliton with a vertical wall. This wave generation method allows the saving of considerable time for this collision process since the counter-propagating wave is generated directly without reflection at vertical wall. For the collision of two solitary waves, numerical results show that the run-up phenomenon can be well explained, the solution of the maximum wave run-up is almost equal to experimental measurement. The simulated wave profiles during the collision are in good agreement with experimental results. For the reflection at vertical wall, the spatial profiles of the wave at fixed instants show that this problem is equivalent to the collision process. 


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Vivek Francis ◽  
Balaji Ramakrishnan ◽  
Murray Rudman

Abstract Tsunami waves pose a threat to the coastal zone, and numerous studies have been carried out in the past to understand them. Solitary waves have been extensively used in research because they approximate certain important characteristics of tsunami waves. The present study focusses on the interaction and run-up of solitary waves on coastal protection structures in the form of thin, rigid vertical porous barriers with special attention given to the degree of energy dissipation. To understand the physics of energy dissipation, solitary wave interaction with a porous barrier has been studied from the viewpoint of energy balance. Based on this, a relationship for the wave energy dissipation has been developed. The experimental data show that the plate porosity that gives the optimal energy dissipation lies within the 10–20% range. From the experiments, the phase shift that the solitary wave undergoes upon interaction with the porous barrier models has also been recorded. In addition, a formula is proposed for maximum wave run-up on the porous barrier, which should be useful in the planning, design, construction, and maintenance of coastal protection structures.


2011 ◽  
Vol 668 ◽  
pp. 582-606 ◽  
Author(s):  
GEIR K. PEDERSEN

When a wave of permanent form is obliquely incident on an inclined plane, the wave pattern becomes stationary in a frame of reference which moves along the shore. This enables a simplified mathematical description of the problem which is used herein as a basis for efficient and accurate numerical simulations. First, a nonlinear and weakly dispersive set of Boussinesq equations for the downstream evolution of such stationary patterns is derived. In the hydrostatic approximation, streamline-based Lagrangian versions of the evolution equations are developed for automatic tracing of the shoreline. Both equation sets are, in their present form, developed for non-breaking waves only. Finite difference models for both equation sets are designed. These methods are then coupled dynamically to obtain a single nonlinear model with dispersive wave propagation in finite depth and an accurate runup representation. The models are tested by runup of waves at normal incidence and comparison with a more general model for the refraction of a solitary wave on a slope. Finally, a set of runup computations for oblique solitary waves is performed and compared with estimates of oblique runup heights obtained from a combination of an analytic solution for normal incidence and optics. We find that the runup heights decrease in proportion to the square of the angle of incidence for angles up to 45°, for which the height is reduced by around 12% relative to that of normal incidence. In Appendix A, the validity of the downstream formulation is discussed in the light of solitary wave optics and wave jumps.


2021 ◽  
Vol 9 (3) ◽  
pp. 264
Author(s):  
Shanti Bhushan ◽  
Oumnia El Fajri ◽  
Graham Hubbard ◽  
Bradley Chambers ◽  
Christopher Kees

This study evaluates the capability of Navier–Stokes solvers in predicting forward and backward plunging breaking, including assessment of the effect of grid resolution, turbulence model, and VoF, CLSVoF interface models on predictions. For this purpose, 2D simulations are performed for four test cases: dam break, solitary wave run up on a slope, flow over a submerged bump, and solitary wave over a submerged rectangular obstacle. Plunging wave breaking involves high wave crest, plunger formation, and splash up, followed by second plunger, and chaotic water motions. Coarser grids reasonably predict the wave breaking features, but finer grids are required for accurate prediction of the splash up events. However, instabilities are triggered at the air–water interface (primarily for the air flow) on very fine grids, which induces surface peel-off or kinks and roll-up of the plunger tips. Reynolds averaged Navier–Stokes (RANS) turbulence models result in high eddy-viscosity in the air–water region which decays the fluid momentum and adversely affects the predictions. Both VoF and CLSVoF methods predict the large-scale plunging breaking characteristics well; however, they vary in the prediction of the finer details. The CLSVoF solver predicts the splash-up event and secondary plunger better than the VoF solver; however, the latter predicts the plunger shape better than the former for the solitary wave run-up on a slope case.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Marin Marin ◽  
M. M. Bhatti

AbstractThe present study deals with the head-on collision process between capillary–gravity solitary waves in a finite channel. The present mathematical modeling is based on Nwogu’s Boussinesq model. This model is suitable for both shallow and deep water waves. We have considered the surface tension effects. To examine the asymptotic behavior, we employed the Poincaré–Lighthill–Kuo method. The resulting series solutions are given up to third-order approximation. The physical features are discussed for wave speed, head-on collision profile, maximum run-up, distortion profile, the velocity at the bottom, and phase shift profile, etc. A comparison is also given as a particular case in our study. According to the results, it is noticed that the free parameter and the surface tension tend to decline the solitary-wave profile significantly. However, the maximum run-up amplitude was affected in great measure due to the surface tension and the free parameter.


Sign in / Sign up

Export Citation Format

Share Document