Effects of horizontally two-dimensional bodies on the mass transport near the sea bottom

1977 ◽  
Vol 83 (3) ◽  
pp. 415-431 ◽  
Author(s):  
Jacques Lamoure ◽  
Chiang C. Mei

Mass transport close to the sea bottom is investigated for simple harmonic waves around a body with a small horizontal dimension. For gravity waves it is shown that the mass transport very near the bottom points towards a convex corner, but near the top of the boundary layer its direction reverses. Possible implications for silting near a pile and a harbour entrance are discussed and some experimental evidence given. For tides, the Coriolis force introduces a spiralling variation within the boundary layer, and possible inferences for coastline modification are drawn.

1976 ◽  
Vol 76 (4) ◽  
pp. 819-828 ◽  
Author(s):  
B. D. Dore

The double-boundary-layer theory of Stuart (1963, 1966) and Riley (1965, 1967) is employed to investigate the mass transport velocity due to two-dimensional standing waves in a system comprising two homogeneous fluids of different densities and viscosities. The most important double-boundary-layer structure occurs in the neighbourhood of the oscillating interface, and the possible existence of jet-like motions is envisaged at nodal positions, owing to the nature of the mean flows in the layers. In practice, the magnitude of the mass transport velocity can be a significant fraction of that of the primary, oscillatory velocity.


1979 ◽  
Vol 101 (1) ◽  
pp. 23-29 ◽  
Author(s):  
H. Koyama ◽  
S. Masuda ◽  
I. Ariga ◽  
I. Watanabe

To investigate the effects of Coriolis force on two-dimensional laminar and turbulent boundary layers, quantitative experiments were performed. A numerical evaluation was also carried out utilizing the Monin-Oboukhov coefficient including the effect of rotation. From the experimental results, the boundary layer development was found to be promoted on the unstable side and suppressed on the stable side, in comparison with the case of zero-rotation. In the stable boundary layer, the critical Reynolds number for relaminarization was observed to increase as rotation number was decreased. Calculated results were seen to predict the stabilizing effect of Coriolis force fairly well.


2020 ◽  
Author(s):  
Zixuan Xiang ◽  
Jianning Sun ◽  
Jun Zou

<p>Large-eddy simulations are performed to investigate the effects of background wind on the secondary circulations (SCs) in the convective boundary layer. Heterogeneities are produced by a prescribed two-dimensional surface sensible heat flux pattern of chessboard-type and have a size which is a bit larger than the boundary layer height.</p><p>When the wind blows along the diagonal of the chessboard-like pattern, the roll-like SCs are observed even when the background wind speed is as large as 10m/s, with whose axes are oriented along the diagonal of the pattern. Another case with wind direction along neither the diagonal nor the side of the chessboard-like pattern and weak wind speed shows the roll-like SCs still exist but lack symmetry. The SCs become much weaker and change their axes orientation when the wind speed increases.</p><p>Meanwhile, the results are different when the Coriolis force is considered. When the background wind is weak, the asymmetry of the SCs become more significant with the development of boundary layer when the Coriolis force is considered, while the SCs tend to be symmetrical without the Coriolis force. When the background wind strengthens, the SCs are more difficult to maintain in the case of Coriolis force.</p><p>Further analysis through rotational and divergent decomposition suggests which part contributes more to the maintenance of the SCs.</p><p></p>


1977 ◽  
Vol 43 (374) ◽  
pp. 3797-3807
Author(s):  
Hideharu KOYAMA ◽  
Shuichi KIMURA ◽  
Shigeaki MASUDA ◽  
Ichiro ARIGA ◽  
Ichiro WATANABE

1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.


Sign in / Sign up

Export Citation Format

Share Document