Stabilizing and Destabilizing Effects of Coriolis Force on Two-Dimensional Laminar and Turbulent Boundary Layers

1979 ◽  
Vol 101 (1) ◽  
pp. 23-29 ◽  
Author(s):  
H. Koyama ◽  
S. Masuda ◽  
I. Ariga ◽  
I. Watanabe

To investigate the effects of Coriolis force on two-dimensional laminar and turbulent boundary layers, quantitative experiments were performed. A numerical evaluation was also carried out utilizing the Monin-Oboukhov coefficient including the effect of rotation. From the experimental results, the boundary layer development was found to be promoted on the unstable side and suppressed on the stable side, in comparison with the case of zero-rotation. In the stable boundary layer, the critical Reynolds number for relaminarization was observed to increase as rotation number was decreased. Calculated results were seen to predict the stabilizing effect of Coriolis force fairly well.

1966 ◽  
Vol 8 (4) ◽  
pp. 426-436 ◽  
Author(s):  
A. D. Carmichael ◽  
G. N. Pustintsev

Methods of predicting the growth of turbulent boundary layers in conical diffusers using the kinetic-energy deficit equation were developed. Three different forms of auxiliary equations were used. Comparison between the measured and predicted results showed that there was fair agreement although there was a tendency to underestimate the predicted momentum thickness and over-estimate the predicted shape factor.


1982 ◽  
Vol 33 (2) ◽  
pp. 174-198 ◽  
Author(s):  
C.J. Baker ◽  
L.C. Squire

SummaryDetailed measurements have been made of the boundary-layer development on a small two-dimensional aerofoil with supercritical flow and a weak shock wave, together with similar measurements on the tunnel side wall opposite the aerofoil surface. The Reynolds number of the test is similar to that found in the turbines of jet engines and there is a strong favourable pressure gradient ahead of the interaction of the shock with the boundary layer as often occurs in turbine blade passages. However, whereas the boundary layer on the aerofoil is thin and of the same thickness as that on a turbine blade, the thicker boundary layer on the wall is more typical of that on the hub or casing. The experimental results are compared with results from a wide range of calculation methods. One interesting conclusion from these comparisons is the fact that prediction methods which perform well for the thin boundary layers on the aerofoil do not necessarily perform as well for the thicker boundary layers on the wall.


1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.


2021 ◽  
Author(s):  
Michael Hopfinger ◽  
Volker Gümmer

Abstract The development of viscous endwall flow is of major importance when considering highly-loaded compressor stages. Essentially, all losses occurring in a subsonic compressor are caused by viscous shear stresses building up boundary layers on individual aerofoils and endwall surfaces. These boundary layers cause significant aerodynamic blockage and cause a reduction in effective flow area, depending on the specifics of the stage design. The presented work describes the numerical investigation of blockage development in a 3.5-stage low-speed compressor with tandem stator vanes. The research is aimed at understanding the mechanism of blockage generation and growth in tandem vane rows and across the entire compressor. Therefore, the blockage generation is investigated as a function of the operating point, the rotational speed and the inlet boundary layer thickness.


1972 ◽  
Vol 56 (1) ◽  
pp. 161-171 ◽  
Author(s):  
A. J. Robins ◽  
J. A. Howarth

This paper examines the nature of the development of two-dimensional laminar flow of an incompressible fluid at the rear stagnation point on a cylinder which is started impulsively from rest. Proudman & Johnson (1962) first examined this type of flow, andobtainedasimilarity solution of the inviscid form of the equations of motion. This solution describes the nature of the flow at large distances from the surface, for large times after the start of the motion. Here, the flow at the rear stagnation point is examined in greater detail. The solution found by Proudman & Johnson constitutes the leading term in an asymptotic expansion, valid for large times. Further terms in this expansion are now calculated, and the method of matched asymptotic expansions is used to obtain an inner solution describing the flow near the surface. A numerical integration of the full initial-value problem gives good agreement with the analytical solution.


1983 ◽  
Vol 34 (2) ◽  
pp. 147-161 ◽  
Author(s):  
M.M.M. El Telbany ◽  
J. Niknejad ◽  
A.J. Reynolds

SummaryConsideration is given to the relationship H1 = f(H) linking the common shape factor H and the mass-flow shape parameter H1 which is used in entrainment models of boundary-layer development. A formula suggested by Green et al is found to be most nearly consistent with the measurements presented. However, a more exact prediction of H1 is obtained by introducing a factor involving the Reynolds number based on the local momentum thickness θ; thus H1 = f(H, Reθ). Predictions obtained by incorporating the appropriately modified entrainment equation into the well-known method of Green et al prove not to give an improved representation of the development of boundary layers studied experimentally by the authors and others. It is concluded that the modified formula for H1 is primarily useful in giving an improved specification of the overall boundary layer thickness δ = θ(H1 + H), and hence of other features of the developing profile.


1966 ◽  
Vol 26 (3) ◽  
pp. 481-506 ◽  
Author(s):  
A. E. Perry

The results of a detailed mean velocity survey of a smooth-wall turbulent boundary layer in an adverse pressure gradient are described. Close to the wall, a variety of profiles shapes were observed. Progressing in the streamwise direction, logarithmic, ½-power, linear and$\frac{3}{2}$-power distributions seemed to form, and generally each predominated at a different stage of the boundary-layer development. It is believed that the phenomenon occurred because of the nature of the pressure gradient imposed (an initially high gradient which fell to low values as the boundary layer developed) and attempts are made to describe the flow by an extension of the regional similarity hypothesis proposed by Perry, Bell & Joubert (1966). Data from other sources is limited but comparisons with the author's results are encouraging.


1967 ◽  
Vol 89 (3) ◽  
pp. 655-663 ◽  
Author(s):  
H. L. Moses ◽  
J. R. Chappell

An investigation of turbulent boundary-layer separation in internal flow is presented, with experimental results for a variable angle, two-dimensional diffuser. A simple analytical model is adopted, which consists of wall boundary layers and a one-dimensional, inviscid core. By calculating the pressure simultaneously with the boundary-layer development, the approximate method is extended to include the separated region. With a limited amount of separated flow, the calculated pressure recovery agrees reasonably well with the experiments and gives a fair indication of maximum diffusion performance. The limitation of the model, as well as the possibility of singularities and downstream instability, are discussed in relation to the general problem of boundary-layer separation.


Sign in / Sign up

Export Citation Format

Share Document