The steady flow due to a rotating sphere at low and moderate Reynolds numbers

1980 ◽  
Vol 101 (2) ◽  
pp. 257-279 ◽  
Author(s):  
S. C. R. Dennis ◽  
S. N. Singh ◽  
D. B. Ingham

The problem of determining the steady axially symmetrical motion induced by a sphere rotating with constant angular velocity about a diameter in an incompressible viscous fluid which is at rest at large distances from it is considered. The basic independent variables are the polar co-ordinates (r, θ) in a plane through the axis of rotation and with origin at the centre of the sphere. The equations of motion are reduced to three sets of nonlinear second-order ordinary differential equations in the radial variable by expanding the flow variables as series of orthogonal Gegenbauer functions with argument μ = cosθ. Numerical solutions of the finite set of equations obtained by truncating the series after a given number of terms are obtained. The calculations are carried out for Reynolds numbers in the range R = 1 to R = 100, and the results are compared with various other theoretical results and with experimental observations.The torque exerted by the fluid on the sphere is found to be in good agreement with theory at low Reynolds numbers and appears to tend towards the results of steady boundary-layer theory for increasing Reynolds number. There is excellent agreement with experimental results over the range considered. A region of inflow to the sphere near the poles is balanced by a region of outflow near the equator and as the Reynolds number increases the inflow region increases and the region of outflow becomes narrower. The radial velocity increases with Reynolds number at the equator, indicating the formation of a radial jet over the narrowing region of outflow. There is no evidence of any separation of the flow from the surface of the sphere near the equator over the range of Reynolds numbers considered.

2012 ◽  
Vol 707 ◽  
pp. 37-52 ◽  
Author(s):  
J. Sznitman ◽  
L. Guglielmini ◽  
D. Clifton ◽  
D. Scobee ◽  
H. A. Stone ◽  
...  

AbstractWe investigate experimentally the characteristics of the flow field that develops at low Reynolds numbers ($\mathit{Re}\ll 1$) around a sharp $9{0}^{\ensuremath{\circ} } $ corner bounded by channel walls. Two-dimensional planar velocity fields are obtained using particle image velocimetry (PIV) conducted in a towing tank filled with a silicone oil of high viscosity. We find that, in the vicinity of the corner, the steady-state flow patterns bear the signature of a three-dimensional secondary flow, characterized by counter-rotating pairs of streamwise vortical structures and identified by the presence of non-vanishing transverse velocities (${u}_{z} $). These results are compared to numerical solutions of the incompressible flow as well as to predictions obtained, for a similar geometry, from an asymptotic expansion solution (Guglielmini et al., J. Fluid Mech., vol. 668, 2011, pp. 33–57). Furthermore, we discuss the influence of both Reynolds number and aspect ratio of the channel cross-section on the resulting secondary flows. This work represents, to the best of our knowledge, the first experimental characterization of the three-dimensional flow features arising in a pressure-driven flow near a corner at low Reynolds number.


1968 ◽  
Vol 32 (1) ◽  
pp. 21-28 ◽  
Author(s):  
C. A. Hieber ◽  
B. Gebhart

Theoretical results are obtained for forced heat convection from a circular cylinder at low Reynolds numbers. Consideration is given to the cases of a moderate and a large Prandtl number, the analysis in each case being based upon the method of matched asymptotic expansions. Comparison between the moderate Prandtl number theory and known experimental results indicates excellent agreement; no relevant experimental work has been found for comparison with the large Prandtl number theory.


1979 ◽  
Vol 92 (4) ◽  
pp. 643-657 ◽  
Author(s):  
Taeyoung Han ◽  
V. C. Patel

Surface streamline patterns on a spheroid have been examined at several angles of attack. Most of the tests were performed at low Reynolds numbers in a hydraulic flume using coloured dye to make the surface flow visible. A limited number of experiments was also carried out in a wind tunnel, using wool tufts, to study the influence of Reynolds number and turbulent separation. The study has verified some of the important qualitative features of three-dimensional separation criteria proposed earlier by Maskell, Wang and others. The observed locations of laminar separation lines on a spheroid at various incidences have been compared with the numerical solutions of Wang and show qualitative agreement. The quantitative differences are attributed largely to the significant viscous-inviscid flow interaction which is present, especially at large incidences.


1937 ◽  
Vol 4 (2) ◽  
pp. A53-A54
Author(s):  
W. E. Howland

Abstract The author presents a figure in which the coefficient of discharge Cd, velocity Cv, and contraction Cc determined by several investigators are plotted logarithmically as points against Reynolds’ numbers. Curves for the coefficients drawn by the author, based on theoretical considerations, show good agreement with the experimental data, thus throwing some light upon the basic phenomena of the discharge of sharp-edged orifices. The variation of the coefficient of discharge of a circular orifice as a function of the Reynolds number is explained as a purely viscous phenomenon for low Reynolds numbers, and by means of a momentum analysis for higher speeds. The analysis presented by the author leads to the development of several formulas for the discharge coefficient, which formulas are in fair agreement with experimental results.


1992 ◽  
Vol 242 ◽  
pp. 299-321 ◽  
Author(s):  
A. Papangelou

Wind-tunnel experiments on the flows created by a number of slightly tapered models of circular cross-section have shown the presence of spanwise cells (regions of constant shedding frequency) at Reynolds numbers of the order of 100. The experiments have also shown a number of other interesting features of these flows: the cellular flow configuration is dependent on the base Reynolds number and independent of the tip Reynolds number, the frequency jump between adjacent cells is a function of flow speed, taper angle and kinematic viscosity, but is constant along a cone's span, and the unsteady hot-wire anemometer signal is both amplitude and phase modulated. A mathematical model is proposed based on the complex Landau—Stuart equation with a spanwise diffusive coupling term. Numerical solutions of this equation have shown many of the qualitative features observed in the experiments.


2010 ◽  
Vol 646 ◽  
pp. 415-439 ◽  
Author(s):  
HARISH N DIXIT ◽  
RAMA GOVINDARAJAN

A vortex placed at a density interface winds it into an ever-tighter spiral. We show that this results in a combination of a centrifugal Rayleigh–Taylor (CRT) instability and a spiral Kelvin–Helmholtz (SKH) type of instability. The SKH instability arises because the density interface is not exactly circular, and dominates at large times. Our analytical study of an inviscid idealized problem illustrates the origin and nature of the instabilities. In particular, the SKH is shown to grow slightly faster than exponentially. The predicted form lends itself for checking by a large computation. From a viscous stability analysis using a finite-cored vortex, it is found that the dominant azimuthal wavenumber is smaller for lower Reynolds number. At higher Reynolds numbers, disturbances subject to the combined CRT and SKH instabilities grow rapidly, on the inertial time scale, while the flow stabilizes at low Reynolds numbers. Our direct numerical simulations are in good agreement with these studies in the initial stages, after which nonlinearities take over. At Atwood numbers of 0.1 or more, and a Reynolds number of 6000 or greater, both stability analysis and simulations show a rapid destabilization. The result is an erosion of the core, and breakdown into a turbulence-like state. In studies at low Atwood numbers, the effect of density on the inertial terms is often ignored, and the density field behaves like a passive scalar in the absence of gravity. The present study shows that such treatment is unjustified in the vicinity of a vortex, even for small changes in density when the density stratification is across a thin layer. The study would have relevance to any high-Péclet-number flow where a vortex is in the vicinity of a density-stratified interface.


1970 ◽  
Vol 42 (3) ◽  
pp. 471-489 ◽  
Author(s):  
S. C. R. Dennis ◽  
Gau-Zu Chang

Finite-difference solutions of the equations of motion for steady incompressible flow around a circular cylinder have been obtained for a range of Reynolds numbers from R = 5 to R = 100. The object is to extend the Reynolds number range for reliable data on the steady flow, particularly with regard to the growth of the wake. The wake length is found to increase approximately linearly with R over the whole range from the value, just below R = 7, at which it first appears. Calculated values of the drag coefficient, the angle of separation, and the pressure and vorticity distributions over the cylinder surface are presented. The development of these properties with Reynolds number is consistent, but it does not seem possible to predict with any certainty their tendency as R → ∞. The first attempt to obtain the present results was made by integrating the time-dependent equations, but the approach to steady flow was so slow at higher Reynolds numbers that the method was abandoned.


1968 ◽  
Vol 10 (2) ◽  
pp. 133-140 ◽  
Author(s):  
R. D. Mills

Numerical solutions of the Navier-Stokes equations have been obtained in the low range of Reynolds numbers for steady, axially symmetric, viscous, incompressible fluid flow through an orifice in a circular pipe with a fixed orifice/pipe diameter ratio. Streamline patterns and vorticity contours are presented as functions of Reynolds number. The theoretically determined discharge coefficients are in good agreement with experimental results of Johansen (2).


1974 ◽  
Vol 65 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Michio Nishioka ◽  
Hiroshi Sato

Velocity measurements were made in the flow field behind a circular cylinder at Reynolds numbers from 10 to 80 and results compared with existing numerical solutions. Takami & Keller's solution for the velocity distribution in the wake shows good agreement at low Reynolds numbers and fair agreement at high Reynolds numbers. The drag coefficient of the cylinder and the size of the standing eddies behind the cylinder were also determined. They are compatible with existing experimental and numerical results. Details of the velocity distribution in the standing eddies are clarified.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


Sign in / Sign up

Export Citation Format

Share Document