scholarly journals A new type of three-dimensional deep-water wave of permanent form

1980 ◽  
Vol 101 (4) ◽  
pp. 797-808 ◽  
Author(s):  
Philip G. Saffman ◽  
Henry C. Yuen

A new class of three-dimensional, deep-water gravity waves of permanent form has been found using an equation valid for weakly nonlinear waves due to Zakharov (1968). These solutions appear as bifurcations from the uniform two-dimensional wave train. The critical wave heights are given as functions of the modulation wave vector. The three-dimensional patterns may be skewed or symmetrical. An example of the skewed wave pattern is given and shown to be stable. The results become exact in the limit of very oblique modulations.

1995 ◽  
Vol 291 ◽  
pp. 57-81 ◽  
Author(s):  
S. M. Churilov ◽  
I. G. Shukhman

We consider the nonlinear spatial evolution in the streamwise direction of slightly three-dimensional disturbances in the form of oblique travelling waves (with spanwise wavenumber kz much less than the streamwise one kx) in a mixing layer vx = u(y) at large Reynolds numbers. A study is made of the transition (with the growth of amplitude) to the regime of a nonlinear critical layer (CL) from regimes of a viscous CL and an unsteady CL, which we have investigated earlier (Churilov & Shukhman 1994). We have found a new type of transition to the nonlinear CL regime that has no analogy in the two-dimensional case, namely the transition from a stage of ‘explosive’ development. A nonlinear evolution equation is obtained which describes the development of disturbances in a regime of a quasi-steady nonlinear CL. We show that unlike the two-dimensional case there are two stages of disturbance growth after transition. In the first stage (immediately after transition) the amplitude A increases as x. Later, at the second stage, the ‘classical’ law A ∼ x2/3 is reached, which is usual for two-dimensional disturbances. It is demonstrated that with the growth of kz the region of three-dimensional behaviour is expanded, in particular the amplitude threshold of transition to the nonlinear CL regime from a stage of ‘explosive’ development rises and therefore in the ‘strongly three-dimensional’ limit kz = O(kx) such a transition cannot be realized in the framework of weakly nonlinear theory.


Author(s):  
Xin Wang ◽  
Makoto Arai ◽  
Gustavo Karuka

With increased activities in natural gas transportation and offshore exploration in the past decades, assessment of sloshing in liquefied natural gas (LNG) tanks has become an important practical issue. In this paper, we focus on the deterministic calculation of the coupled sloshing and ship motions in regular wave conditions. An in-house numerical code is used to solve the seakeeping problem coupled with the sloshing dynamics. The numerical method adopts a weakly nonlinear approach using impulse response functions for the seakeeping problem. Nonlinear Froude-Krylov and hydrostatic forces are directly evaluated in the time domain. A three-dimensional finite difference method is applied to solve the sloshing problem. The numerical method is validated by comparing with experimental results in the literature. The developed numerical method is used to analyze the nonlinear effects of wave heights.


1984 ◽  
Vol 146 ◽  
pp. 1-20 ◽  
Author(s):  
P. J. Bryant

Oblique wave groups consist of waves whose straight parallel lines of constant phase are oblique to the straight parallel lines of constant group phase. Numerical solutions for periodic oblique wave groups with envelopes of permanent shape are calculated from the equations for irrotational three-dimensional deep-water motion with nonlinear upper free-surface conditions. Two distinct families of periodic wave groups are found, one in which the waves in each group are in phase with those in all other groups, and the other in which there is a phase difference of π between the waves in consecutive groups. It is shown that some analytical solutions for oblique wave groups calculated from the nonlinear Schrödinger equation are in error because they ignore the resonant forcing of certain harmonics in two dimensions. Particular attention is given to oblique wave groups whose group-to-wave angle is in the neighbourhood of the critical angle tan−1√½, corresponding to waves on the boundary wedge of the Kelvin ship-wave pattern.


2007 ◽  
Vol 74 (2-3) ◽  
pp. 135-144 ◽  
Author(s):  
Walter Craig ◽  
Diane M. Henderson ◽  
Maribeth Oscamou ◽  
Harvey Segur

1995 ◽  
Vol 303 ◽  
pp. 297-326 ◽  
Author(s):  
Sergei I. Badulin ◽  
Victor I. Shrira ◽  
Christian Kharif ◽  
Mansour Ioualalen

The work is concerned with the problem of the linear instability of symmetric short-crested water waves, the simplest three-dimensional wave pattern. Two complementary basic approaches were used. The first, previously developed by Ioualalen & Kharif (1993, 1994), is based on the application of the Galerkin method to the set of Euler equations linearized around essentially nonlinear basic states calculated using the Stokes-like series for the short-crested waves with great precision. An alternative analytical approach starts with the so-called Zakharov equation, i.e. an integro-differential equation for potential water waves derived by means of an asymptotic procedure in powers of wave steepness. Both approaches lead to the analysis of an eigenvalue problem of the type {\rm det}|{\boldmath A}-\gamma{\boldmath B}|=0 where A and B are infinite square matrices. The first approach should deal with matrices of quite general form although the problem is tractable numerically. The use of the proper canonical variables in our second approach turns the matrix B into the unit one, while the matrix A gets a very specific ‘nearly diagonal’ structure with some additional (Hamiltonian) properties of symmetry. This enables us to formulate simple necessary and sufficient a priori criteria of instability and to find instability characteristics analytically through an asymptotic procedure avoiding a number of additional assumptions that other authors were forced to accept.A comparison of the two approaches is carried out. Surprisingly, the analytical results were found to hold their validity for rather steep waves (up to steepness 0.4) for a wide range of wave patterns. We have generalized the classical Phillips concept of weakly nonlinear wave instabilities by describing the interaction between the elementary classes of instabilities and have provided an understanding of when this interaction is essential. The mechanisms of the relatively high stability of short-crested waves are revealed and explained in terms of the interaction between different classes of instabilities. A helpful interpretation of the problem in terms of an infinite chain of interacting linear oscillators was developed.


1997 ◽  
Vol 352 ◽  
pp. 359-373 ◽  
Author(s):  
KARSTEN TRULSEN ◽  
KRISTIAN B. DYSTHE

The conservative evolution of weakly nonlinear narrow-banded gravity waves in deep water is investigated numerically with a modified nonlinear Schrödinger equation, for application to wide wave tanks. When the evolution is constrained to two dimensions, no permanent shift of the peak of the spectrum is observed. In three dimensions, allowing for oblique sideband perturbations, the peak of the spectrum is permanently downshifted. Dissipation or wave breaking may therefore not be necessary to produce a permanent downshift. The emergence of a standing wave across the tank is also predicted.


Sign in / Sign up

Export Citation Format

Share Document