Three-dimensional disturbances to a mixing layer in the nonlinear critical-layer regime

1995 ◽  
Vol 291 ◽  
pp. 57-81 ◽  
Author(s):  
S. M. Churilov ◽  
I. G. Shukhman

We consider the nonlinear spatial evolution in the streamwise direction of slightly three-dimensional disturbances in the form of oblique travelling waves (with spanwise wavenumber kz much less than the streamwise one kx) in a mixing layer vx = u(y) at large Reynolds numbers. A study is made of the transition (with the growth of amplitude) to the regime of a nonlinear critical layer (CL) from regimes of a viscous CL and an unsteady CL, which we have investigated earlier (Churilov & Shukhman 1994). We have found a new type of transition to the nonlinear CL regime that has no analogy in the two-dimensional case, namely the transition from a stage of ‘explosive’ development. A nonlinear evolution equation is obtained which describes the development of disturbances in a regime of a quasi-steady nonlinear CL. We show that unlike the two-dimensional case there are two stages of disturbance growth after transition. In the first stage (immediately after transition) the amplitude A increases as x. Later, at the second stage, the ‘classical’ law A ∼ x2/3 is reached, which is usual for two-dimensional disturbances. It is demonstrated that with the growth of kz the region of three-dimensional behaviour is expanded, in particular the amplitude threshold of transition to the nonlinear CL regime from a stage of ‘explosive’ development rises and therefore in the ‘strongly three-dimensional’ limit kz = O(kx) such a transition cannot be realized in the framework of weakly nonlinear theory.

2010 ◽  
Vol 5 (3) ◽  
pp. 52-62
Author(s):  
Sergey A. Gaponov ◽  
Natalya M. Terekhova

In linear and nonlinear approach (weakly nonlinear theory of stability) interaction of disturbances on a boundary layer of compressed gas is considered at surface cooling. The regimes of moderate (Max number М = 2) and high (М = 5.35) are considered at supersonic speeds. It is established that the surface cooling leads to considerable change of linear evolution of disturbances: the vortical disturbances of the first mode are stabilised, and the acoustic disturbances of the second mode are destabilised, the change degree is defined by the degree of change of the temperature factor. The nonlinear interaction in three-wave systems on high (М = 5.35) supersonic regimes on a boundary layer of compressed gas is carried out between waves of the different nature (acoustic and vortical) in a regime of a parametrical resonance. As a rating wave the flat acoustic wave which raises three-dimensional subharmonic components of the vortical modes. However, the similar interactions for vortical waves at М = 2 considerably weaken. It is possible to expect that surface cooling will lead to delay of a laminar regime at М = 2 and to accelerate of turbulization at М = 5.35


2008 ◽  
Vol 16 (4) ◽  
Author(s):  
T. Antosiewicz ◽  
T. Szoplik

AbstractIn a previous paper we proposed a modification of metal-coated tapered-fibre aperture probes for scanning near-field optical microscopes (SNOMs). The modification consists in radial corrugations of the metal-dielectric interface oriented inward the core. Their purpose is to facilitate the excitation of surface plasmons, which increase the transport of energy beyond the cut-off diameter and radiate a quasi-dipolar field from the probe output rim. An increase in energy output allows for reduction of the apex diameter, which is the main factor determining the resolution of the microscope. In two-dimensional finite-difference time-domain (FDTD) simulations we analyse the performance of the new type of SNOM probe. We admit, however, that the two-dimensional approximation gives better results than expected from exact three-dimensional ones. Nevertheless, optimisation of enhanced energy throughput in corrugated probes should lead to at least twice better resolution with the same sensitivity of detectors available nowadays.


1999 ◽  
Vol 395 ◽  
pp. 253-270 ◽  
Author(s):  
Y.-J. CHEN ◽  
S. H. DAVIS

A steady, two-dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behaviour of the moving front is described by a slow, spatial–temporal dynamics obtained through a multiple-scale analysis. The resulting system has a parametric-excitation structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection in general stabilizes two-dimensional disturbances, but destabilizes three-dimensional disturbances. When the flow is weak, the morphological instability is incommensurate with the flow wavelength, but as the flow gets stronger, the instability becomes quantized and forced to fit into the flow box. At large flow strength the instability is localized, confined in narrow envelopes. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundaries and asymptotics are obtained by a WKB analysis. The weakly nonlinear interaction is delivered through the Lyapunov–Schmidt method.


Author(s):  
Senthuran Ravinthrakumar ◽  
Trygve Kristiansen ◽  
Babak Ommani

Abstract Coupling between moonpool resonance and vessel motion is investigated in two-dimensional and quasi three-dimensional settings, where the models are studied in forced heave and in freely floating conditions. The two-dimensional setups are with a recess, while the quasi three-dimensional setups are without recess. One configuration with recess is presented for the two-dimensional case, while three different moonpool sizes (without recess) are tested for the quasi three-dimensional setup. A large number of forcing periods, and three wave steepnesses are tested. Boundary Element Method (BEM) and Viscous BEM (VBEM) time-domain codes based on linear potential flow theory, and a Navier–Stokes solver with linear free-surface and body-boundary conditions, are implemented to investigate resonant motion of the free-surface and the model. Damping due to flow separation from the sharp corners of the moonpool inlets is shown to matter for both vessel motions and moonpool response around the piston mode. In general, the CFD simulations compare well with the experimental results. BEM over-predicts the response significantly at resonance. VBEM provides improved results compared to the BEM, but still over-predicts the response. In the two-dimensional study there are significant coupling effects between heave, pitch and moonpool responses. In the quasi three-dimensional tests, the coupling effect is reduced significantly as the moonpool dimensions relative to the displaced volume of the ship is reduced. The first sloshing mode is investigated in the two-dimensional case. The studies show that damping due to flow separation is dominant. The vessel motions are unaffected by the moonpool response around the first sloshing mode.


Author(s):  
Spyros A. Karamanos ◽  
Charis Eleftheriadis

The present paper examines the denting deformation of offshore pipelines and tubular members (D/t≤50) subjected to lateral (transverse) quasi-static loading in the presence of uniform external pressure. Particular emphasis is given on pressure effects on the ultimate lateral load of tubes and on their energy absorption capacity. Pipe segments are modeled with shell finite elements, accounting for geometric and material nonlinearities, and give very good predictions compared with test data from non-pressurized pipes. Lateral loading between two rigid plates, a two-dimensional case, is examined first. Three-dimensional case, are also analyzed, where the load is applied either through a pair of opposite wedge-shaped denting tools or a single spherical denting tool. Load-deflection curves for different levels of external pressure are presented, which indicate that pressure has significant influence on pipe response and strength. Finally, simplified analytical models are proposed for the two-dimensional and three-dimensional load configurations, which yield closed-form expressions, compare fairly well with the finite element results and illustrate some important features of pipeline response in a clear and elegant manner.


1994 ◽  
Vol 278 ◽  
pp. 101-121 ◽  
Author(s):  
R. Mallier ◽  
S. A. Maslowe

We report the results of an investigation of the weakly nonlinear evolution of a triad of waves, each slightly amplified on a linear basis, that are superimposed on a tanh y mixing layer. The triad consists of a plane wave and a pair of oblique modes that act as a subharmonic of order 1/2. The oblique modes are inclined at approximately ±60°. to the mean flow direction and because the resonance conditions are satisfied exactly the analysis is entirely self-consistent as an asymptotic theory. The nonlinearity first occurs within the critical layer and the initial interaction is of the parametric resonance type. This produces faster than exponential growth of the oblique waves, behaviour observed recently in the experiments of Corke & Kusek (1993). The critical-layer dynamics lead subsequently to coupled integro-differential equations governing the amplitude evolution and, as first shown in related work by Goldstein & Lee (1992) on boundary layers in an adverse pressure gradient, these equations develop singularities in a finite time.


1986 ◽  
Vol 163 ◽  
pp. 257-282 ◽  
Author(s):  
Philip Hall ◽  
Mujeeb R. Malik

The instability of a three-dimensional attachment-line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite-amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time-dependent Navier–Stokes equations for the attachment-line flow have been solved using a Fourier–Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite-amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment-line boundary layer is also investigated.


1987 ◽  
Vol 184 ◽  
pp. 207-243 ◽  
Author(s):  
Ralph W. Metcalfe ◽  
Steven A. Orszag ◽  
Marc E. Brachet ◽  
Suresh Menon ◽  
James J. Riley

The three-dimensional stability of two-dimensional vortical states of planar mixing layers is studied by direct numerical integration of the Navier-Stokes equations. Small-scale instabilities are shown to exist for spanwise scales at which classical linear modes are stable. These modes grow on convective timescales, extract their energy from the mean flow and exist at moderately low Reynolds numbers. Their growth rates are comparable with the most rapidly growing inviscid instability and with the growth rates of two-dimensional subharmonic (pairing) modes. At high amplitudes, they can evolve into pairs of counter-rotating, streamwise vortices, connecting the primary spanwise vortices, which are very similar to the structures observed in laboratory experiments. The three-dimensional modes do not appear to saturate in quasi-steady states as do the purely two-dimensional fundamental and subharmonic modes in the absence of pairing. The subsequent evolution of the flow depends on the relative amplitudes of the pairing modes. Persistent pairings can inhibit three-dimensional instability and, hence, keep the flow predominantly two-dimensional. Conversely, suppression of the pairing process can drive the three-dimensional modes to more chaotic, turbulent-like states. An analysis of high-resolution simulations of fully turbulent mixing layers confirms the existence of rib-like structures and that their coherence depends strongly on the presence of the two-dimensional pairing modes.


Sign in / Sign up

Export Citation Format

Share Document