Mass transfer between a plane surface and an impinging turbulent jet: the influence of surface-pressure fluctuations

1982 ◽  
Vol 119 ◽  
pp. 91-105 ◽  
Author(s):  
K. Kataoka ◽  
Y. Kamiyama ◽  
S. Hashimoto ◽  
T. Komai

Local measurement of the mass-transfer rate and velocity gradient when an axisymmetric jet impinges on a flat plate was carried out using an electrochemical technique. Local measurement of the surface pressure on the flat plate was carried out separately using piezoelectric pressure transducers. The stagnation-point mass-transfer coefficient reaches a maximum when the flat plate is placed at 6 nozzle diameters from a convergent nozzle. It has been confirmed that the mass transfer to the flat plate for a high Schmidt number is greatly enhanced owing to the velocity-gradient disturbances in the wall region of the boundary layer, while the momentum transfer is insensitive to such disturbances. The relative intensity of the velocity-gradient fluctuations on the wall has an extremely large value at and near to the stagnation point, and decreases downstream, approaching a large constant value.These velocity-gradient disturbances are not due to the usual interaction of Reynolds stress with the shear stress of the mean flow, but are due to the interaction with the surface-pressure fluctuations converted from the velocity fluctuations of the oncoming jet.The three co-ordinate dimensions of large-scale eddies are calculated from the auto- and spatial correlations of the surface-pressure fluctuations. It is considered that such large-scale eddies play an important role in the production of a velocity-gradient disturbance in the wall region of the boundary layer from the velocity turbulence of the approaching jet.

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 702
Author(s):  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Anigere Marikempaiah Jyothi ◽  
Ballajja Chandrappa Prasannakumara ◽  
Ioannis E. Sarris

The flow and heat transfer of non-Newtonian nanofluids has an extensive range of applications in oceanography, the cooling of metallic plates, melt-spinning, the movement of biological fluids, heat exchangers technology, coating and suspensions. In view of these applications, we studied the steady Marangoni driven boundary layer flow, heat and mass transfer characteristics of a nanofluid. A non-Newtonian second-grade liquid model is used to deliberate the effect of activation energy on the chemically reactive non-Newtonian nanofluid. By applying suitable similarity transformations, the system of governing equations is transformed into a set of ordinary differential equations. These reduced equations are tackled numerically using the Runge–Kutta–Fehlberg fourth-fifth order (RKF-45) method. The velocity, concentration, thermal fields and rate of heat transfer are explored for the embedded non-dimensional parameters graphically. Our results revealed that the escalating values of the Marangoni number improve the velocity gradient and reduce the heat transfer. As the values of the porosity parameter increase, the velocity gradient is reduced and the heat transfer is improved. Finally, the Nusselt number is found to decline as the porosity parameter increases.


1996 ◽  
Vol 326 ◽  
pp. 1-36 ◽  
Author(s):  
FréDÉRic Ducros, Pierre Comte ◽  
Marcel Lesieur

It is well known that subgrid models such as Smagorinsky's cannot be used for the spatially growing simulation of the transition to turbulence of flat-plate boundary layers, unless large-amplitude perturbations are introduced at the upstream boundary: they are over-dissipative, and the flow simulated remains laminar. This is also the case for the structure-function model (SF) of Métais & Lesieur (1992). In the present paper we present a sequel to this model, the filtered-structure-function (FSF) model. It consists of removing the large-scale fluctuations of the field before computing its second-order structure function. Analytical arguments confirm the superiority of the FSF model over the SF model for large-eddy simulations of weakly unstable transitional flows. The FSF model is therefore used for the simulation of a quasi-incompressible (M∞ = 0.5) boundary layer developing spatially over an adiabatic flat plate, with a low level of upstream forcing. With the minimal resolution 650 × 32 × 20 grid points covering a range of streamwise Reynolds numbers Rex1 ε [3.4 × 105, 1.1 × 106], transition is obtained for 80 hours of time-processing on a CRAY 2 (whereas DNS of the whole transition takes about ten times longer). Statistics of the LES are found to be in acceptable agreement with experiments and empirical laws, in the laminar, transitional and turbulent parts of the domain. The dynamics of low-pressure and high-vorticity distributions is examined during transition, with particular emphasis on the neighbourhood of the critical layer (defined here as the height of the fluid travelling at a speed equal to the phase speed of the incoming Tollmien–Schlichting waves). Evidence is given that a subharmonic-type secondary instability grows, followed by a purely spanwise (i.e. time-independent) mode which yields peak-and-valley splitting and transition to turbulence. In the turbulent region, flow visualizations and local instantaneous profiles are provided. They confirm the presence of low- and high-speed streaks at the wall, weak hairpins stretched by the flow and bursting events. It is found that most of the vorticity is produced in the spanwise direction, at the wall, below the high-speed streaks. Isosurfaces of eddy viscosity confirm that the FSF model does not perturb transition much, and acts mostly in the vicinity of the hairpins.


1988 ◽  
Vol 189 ◽  
pp. 135-163 ◽  
Author(s):  
A. Haji-Haidari ◽  
C. R. Smith

The velocity field and turbulence structure in the near wake of a thick flat plate with a tapered trailing-edge geometry are examined using both hydrogen-bubble flow visualization and hot-film anemometry measurements. Tests were conducted for Re1 = 8.5 × 105 in the region 0 < x+ < 6400 behind the trailing edge. The probe and visualization results indicate a similarity between both (i) velocity and turbulence structure variations wih x+ in the near wake, and (ii) the corresponding changes in similar flow characteristics with y+ within a turbulent boundary layer. In particular, visualization data in the vicinity of the wake centreline reveal the existence of strong streamwise flow structures in the region close (x+ < 270) to the trailing edge. The streamwise orientation of the observed structures diminishes as x+ increases. From hot-film measurements, two separate regions along the wake centreline can be distinguished: (i) a linear growth region which extends over 0 < x+ < 100, wherein the centreline velocity varies linearly with x+; and (ii) a logarithmic growth region for x+ > 270, wherein the centreline velocity varies as log x+. The similarity in behaviour between these regions and the comparable wall region of a turbulent boundary layer suggests the existence of a common functionality. This similarity is demonstrated by a simple linear relationship of the form y+ = Kx+, which is shown to approximately collapse the velocity behaviour both across a turbulent boundary layer and along the wake centreline to a unified set of empirical relationships.


1997 ◽  
Vol 38 (10-13) ◽  
pp. 1209-1218 ◽  
Author(s):  
Shigeru Mori ◽  
Mikio Kumita ◽  
Tohru Takahashi ◽  
Akira Tanimoto ◽  
Mikio Sakakibara

1984 ◽  
Vol 142 ◽  
pp. 121-149 ◽  
Author(s):  
William W. Willmarth ◽  
Lalit K. Sharma

The small-scale structure of the streamwise velocity fluctuations in the wall region of a turbulent boundary layer is examined in a new wind-tunnel facility using hot-wires smaller than any previously constructed (typical dimensions: l = 25 μm, d = 0.5 μm). In the boundary layer in which the measurements were made, the ratio of the hot-wire length to the viscous length is 0.3. The turbulent intensity measured with the small hot wires is larger than that measured with longer wires owing to the better spatial resolution of the small wires. The velocity fluctuations measured by the small hot wires are also analysed to determine the burst frequency at two Reynolds numbers and at various distances from the wall. The dimensionless burst frequency does not depend on the Reynolds number when scaled with wall parameters. However, it increases with Reynolds number when scaled with outer variables. Velocity fluctuations measured by two hot wires, less than two viscous lengths apart, are analysed to reveal the small-scale features present during a burst and in the absence of a burst. The main conclusions are: (1) intermittent small-scale shear layers occur most frequently when bursts are present, less frequently just after a burst, and even less frequently just before a burst; and (2) on occasion the velocity gradient of the small-scale shear layers is as large as the mean-velocity gradient at the wall.


Sign in / Sign up

Export Citation Format

Share Document