Stability of symmetric film-splitting between counter-rotating cylinders

1990 ◽  
Vol 216 ◽  
pp. 437-458 ◽  
Author(s):  
D. J. Coyle ◽  
C. W. Macosko ◽  
L. E. Scriven

The ribbing instability, an extremely common cause of non-uniform liquid films in coating operations, is investigated both theoretically and experimentally. The Navier–Stokes system for the two-dimensional flow in symmetric film-splitting in forward roll coating is solved by finite-element analysis. Stability of the flow with respect to three-dimensional disturbances is examined by applying linear stability theory in a consistent finite-element approach, taking Fourier components in the transverse direction. The resulting generalized asymmetric eigenproblem is solved for the growth rates of disturbances as functions of wavenumber. The theory accurately predicts the critical capillary number and wavenumber at the transition to large-amplitude ribs. A sensitive experimental technique for detecting the ribs was developed that relies on low-angle reflection of a focused strip of white light off the meniscus between the rolls. This allowed detection of much smaller amplitude ribs, and much smaller critical capillary numbers were measured. The results indicate that the transition to ribbing is an imperfect bifurcation due to end effects, and clarify earlier discordances in the literature.

2012 ◽  
Vol 201-202 ◽  
pp. 741-744 ◽  
Author(s):  
Zhen Ning Hou ◽  
Jun Wu ◽  
Qing Wang ◽  
Hong Gen Tian ◽  
Nan Chao ◽  
...  

A finite element approach based on Ansys is developed to simulate stress intensity distribution in a three dimensional model of coupling clamp joint, which includes ferrules, pipe caps and bolts. The characteristics of stress intensity distributions of coupling clamp joint under strength pressure loading have been studied by means of the non-linear finite element method. The FE model can also predict the clamp quality and tolerances to be expected under different process conditions and define the most effective process parameters to influence the tolerances. The study could give us a better understanding on the mechanism and basis for optimization design of the coupling clamp joint.


1987 ◽  
Vol 109 (1) ◽  
pp. 71-76 ◽  
Author(s):  
J. O. Medwell ◽  
D. T. Gethin ◽  
C. Taylor

The performance of a cylindrical bore bearing fed by two axial grooves orthogonal to the load line is analyzed by solving the Navier-Stokes equations using the finite element method. This produces detailed information about the three-dimensional velocity and pressure field within the hydrodynamic film. It is also shown that the method may be applied to long bearing geometries where recirculatory flows occur and in which the governing equations are elliptic. As expected the analysis confirms that lubricant inertia does not affect bearing performance significantly.


Author(s):  
Hiroshi Dan ◽  
◽  
Hiroshi Kanayama

In this paper, viscous shallow-water equations are derived from three-dimensional Navier-Stokes equations under the hydrostatic assumption. The viscous shallow-water equations are approximated by the finite element method based on our numerical scheme developed in 1978. This approach is used to simulate a tsunami in Hakata Bay. Results show a reasonable estimate of the tsunami arrival time.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2013 ◽  
Vol 41 (1) ◽  
pp. 60-79 ◽  
Author(s):  
Wei Yintao ◽  
Luo Yiwen ◽  
Miao Yiming ◽  
Chai Delong ◽  
Feng Xijin

ABSTRACT: This article focuses on steel cord deformation and force investigation within heavy-duty radial tires. Typical bending deformation and tension force distributions of steel reinforcement within a truck bus radial (TBR) tire have been obtained, and they provide useful input for the local scale modeling of the steel cord. The three-dimensional carpet plots of the cord force distribution within a TBR tire are presented. The carcass-bending curvature is derived from the deformation of the carcass center line. A high-efficiency modeling approach for layered multistrand cord structures has been developed that uses cord design variables such as lay angle, lay length, and radius of the strand center line as input. Several types of steel cord have been modeled using the developed method as an example. The pure tension for two cords and the combined tension bending under various loading conditions relevant to tire deformation have been simulated by a finite element analysis (FEA). Good agreement has been found between experimental and FEA-determined tension force-displacement curves, and the characteristic structural and plastic deformation phases have been revealed by the FE simulation. Furthermore, some interesting local stress and deformation patterns under combined tension and bending are found that have not been previously reported. In addition, an experimental cord force measurement approach is included in this article.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document