Numerical simulations of three-dimensional thermal convection in a fluid with strongly temperature-dependent viscosity

1991 ◽  
Vol 233 ◽  
pp. 299-328 ◽  
Author(s):  
Masaki Ogawa ◽  
Gerald Schubert ◽  
Abdelfattah Zebib

Numerical calculations are presented for the steady three-dimensional structure of thermal convection of a fluid with strongly temperature-dependent viscosity in a bottom-heated rectangular box. Viscosity is assumed to depend on temperature T as exp (− ET), where E is a constant; viscosity variations across the box r (= exp (E)) as large as 105 are considered. A stagnant layer or lid of highly viscous fluid develops in the uppermost coldest part of the top cold thermal boundary layer when r > rc1, where r = rc1 ≡ 1.18 × 103Rt0.309 and Rt is the Rayleigh number based on the viscosity at the top boundary. Three-dimensional convection occurs in a rectangular pattern beneath this stagnant lid. The planform consists of hot upwelling plumes at or near the centre of a rectangle, sheets of cold sinking fluid on the four sides, and cold sinking plume concentrations immersed in the sheets. A stagnant lid does not develop, i.e. convection involves all of the fluid in the box when r < rc1. The whole-layer mode of convection occurs in a three-dimensional bimodal pattern when r > rc2 = 3.84 × 106Rt−1.35. The planform of the convection is rectangular with the coldest parts of the sinking fluid and the hottest part of the upwelling fluid occurring as plumes at the four corners and at the centre of the rectangle, respectively. Both hot uprising plumes and cold sinking plumes have sheet-like extensions, which become more well-developed as r increases. The whole-layer mode of convection occurs as two-dimensional rolls when r < min (rc1, rc2). The Nusselt number Nu depends on the viscosity at the top surface more strongly in the regime of whole-layer convection than in the regime of stagnant-lid convection. In the whole-layer convective regime, Nu depends more strongly on the viscosity at the top surface than on the viscosity at the bottom boundary.

1978 ◽  
Vol 100 (2) ◽  
pp. 224-229 ◽  
Author(s):  
O. T. Hanna ◽  
O. C. Sandall

Analytical approximations are developed to predict the effect of a temperature-dependent viscosity on convective heat transfer through liquids in fully developed turbulent pipe flow. The analysis expresses the heat transfer coefficient ratio for variable to constant viscosity in terms of the friction factor ratio for variable to constant viscosity, Tw, Tb, and a fluid viscosity-temperature parameter β. The results are independent of any particular eddy diffusivity distribution. The formulas developed here represent an analytical approximation to the model developed by Goldmann. These approximations are in good agreement with numerical solutions of the model nonlinear differential equation. To compare the results of these calculations with experimental data, a knowledge of the effect of variable viscosity on the friction factor is required. When available correlations for the friction factor are used, the results given here are seen to agree well with experimental heat transfer coefficients over a considerable range of μw/μb.


1976 ◽  
Vol 98 (3) ◽  
pp. 459-465 ◽  
Author(s):  
S. W. Hong ◽  
A. E. Bergles

A boundary layer solution is presented for fully developed laminar flow in a horizontal circular tube, assuming large Prandtl number and temperature-dependent viscosity and density. The solution is given by Nu = C1 Ra1/4, where C1 is a function of a nondimensional viscosity parameter and the heat flux boundary condition. The heat transfer predictions for large values of the viscosity parameter are 50 percent above the constant viscosity predictions. The present analysis is in good agreement with experimental data for water and ethylene glycol flowing in electrically heated tubes which approximate the boundary conditions assumed in the analysis.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7829
Author(s):  
Meng Yang ◽  
Munawwar Ali Abbas ◽  
Wissam Sadiq Khudair

In this research, we studied the impact of temperature dependent viscosity and thermal radiation on Eyring Powell fluid with porous channels. The dimensionless equations were solved using the perturbation technique using the Weissenberg number (ε ≪ 1) to obtain clear formulas for the velocity field. All of the solutions for the physical parameters of the Reynolds number (Re), magnetic parameter (M), Darcy parameter (Da) and Prandtl number (Pr) were discussed through their different values. As shown in the plots the two-dimensional and three-dimensional graphical results of the velocity profile against various pertinent parameters have been illustrated with physical reasons. The results revealed that the temperature distribution increases for higher Prandtl and thermal radiation values. Such findings are beneficial in the field of engineering sciences.


Sign in / Sign up

Export Citation Format

Share Document