scholarly journals Energy and Temperature-Dependent Viscosity Analysis on Magnetized Eyring-Powell Fluid Oscillatory Flow in a Porous Channel

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7829
Author(s):  
Meng Yang ◽  
Munawwar Ali Abbas ◽  
Wissam Sadiq Khudair

In this research, we studied the impact of temperature dependent viscosity and thermal radiation on Eyring Powell fluid with porous channels. The dimensionless equations were solved using the perturbation technique using the Weissenberg number (ε ≪ 1) to obtain clear formulas for the velocity field. All of the solutions for the physical parameters of the Reynolds number (Re), magnetic parameter (M), Darcy parameter (Da) and Prandtl number (Pr) were discussed through their different values. As shown in the plots the two-dimensional and three-dimensional graphical results of the velocity profile against various pertinent parameters have been illustrated with physical reasons. The results revealed that the temperature distribution increases for higher Prandtl and thermal radiation values. Such findings are beneficial in the field of engineering sciences.

2021 ◽  
pp. 27-34
Author(s):  
Wissam Sadiq Khudair ◽  
Hasan Hadi Dwail ◽  
Hayder Kadim Mohammed

In this research, we studied the impact of Magnetohydrodynamic (MHD) on Jeffrey fluid with porous channel saturated with temperature-dependent viscosity (TDV). It is obtained on the movement of fluid flow equations by using the method of perturbation technique in terms of number Weissenberg ( ) to get clear formulas for the field of velocity. All the solutions of physical parameters of the Reynolds number , Magnetic parameter , Darcy parameter , Peclet number  and are discussed under the different values, as shown in the plots.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 200
Author(s):  
Muhammad Qasim ◽  
Zafar Ali ◽  
Umer Farooq ◽  
Dianchen Lu

This study comprehensively explores the generalized form of two-dimensional peristaltic motions of incompressible fluid through temperature-dependent physical properties in a non-symmetric channel. Generation of entropy in the system, carrying Joule heat and Lorentz force is also examined. Viscous dissipation is not ignored, for viewing in-depth, effects of heat transmission and entropy production. The modeling of equations is tracked first in fixed and then in wave frame. The resultant set of coupled non-linear equations are solved numerically by utilizing NDSolve in Mathematica. Comparison between NDSolve and the numerical results obtained through bvp4c MATLAB is made for the validation of our numerical codes. The attained results are found to be in excellent agreement. The impact of control parameters on the velocity profiles, pressure gradient, heat transfer, streamlines and entropy production are studied and discussed graphically. It is witnessed that entropy production and heat transfer are increased significantly subject to the enhancement of Hartman number, Brinkman number and electrical conductivity parameter. Hence, choosing appropriate values of physical parameters, performance and efficiency of flow structure and system can be improved. The results reported provide a virtuous insight into bio energy systems providing a useful standard for experimental and extra progressive computational multiphysics simulations.


2019 ◽  
Vol 8 (1) ◽  
pp. 356-367 ◽  
Author(s):  
J. V. Ramana Reddy ◽  
V. Sugunamma ◽  
N. Sandeep

Abstract The 3D flow of non-Newtonian nanoliquid flows past a bidirectional stretching sheet with heat transfer is investigated in the present study. It is assumed that viscosity of the liquid varies with temperature. Carreau non-Newtonain model, Tiwari and Das nanofluid model are used to formulate the problem. The impacts of Joule heating, nonlinear radiation and non-uniform (space and temperature dependent) heat source/sink are accounted. Al-Cu-CH3OH and Cu-CH3OH are considered as nanoliquids for the present study. The solution of the problem is attained by the application of shooting and R.K. numerical procedures. Graphical and tabular illustrations are incorporated with a view of understanding the influence of various physical parameters on the flow field. We eyed that using of Al-Cu alloy nanoparticles in the carrier liquid leads to superior heat transfer ability instead of using only Aluminum nanoparticles. Weissenberg number and viscosity parameter have inclination to exalt the thermal field.


2020 ◽  
Vol 10 (2) ◽  
pp. 708 ◽  
Author(s):  
Hafiz Abdul Wahab ◽  
Hussan Zeb ◽  
Saira Bhatti ◽  
Muhammad Gulistan ◽  
Seifedine Kadry ◽  
...  

The main aim of the current study is to determine the effects of the temperature dependent viscosity and thermal conductivity on magnetohydrodynamics (MHD) flow of a non-Newtonian fluid over a nonlinear stretching sheet. The viscosity of the fluid depends on stratifications. Moreover, Powell–Eyring fluid is electrically conducted subject to a non-uniform applied magnetic field. Assume a small magnetic reynolds number and boundary layer approximation are applied in the mathematical formulation. Zero nano-particles mass flux condition to the sheet is considered. The governing model is transformed into the system of nonlinear Ordinary Differential Equation (ODE) system by using suitable transformations so-called similarity transformation. In order to calculate the solution of the problem, we use the higher order convergence method, so-called shooting method followed by Runge-Kutta Fehlberg (RK45) method. The impacts of different physical parameters on velocity, temperature and concentration profiles are analyzed and discussed. The parameters of engineering interest, i.e., skin fraction, Nusselt and Sherwood numbers are studied numerically as well. We concluded that the velocity profile decreases by increasing the values of S t , H and M. Also, we have analyzed the variation of temperature and concentration profiles for different physical parameters.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
I. S. Shivakumara ◽  
Jinho Lee ◽  
C. E. Nanjundappa

The onset of thermogravitational convection in a horizontal ferrofluid layer is investigated with viscosity depending exponentially on temperature. The bounding surfaces of the ferrofluid layer are considered to be either stress free or rigid-ferromagnetic and insulated to temperature perturbations. The resulting eigenvalue problem is solved numerically using the Galerkin technique and also by a regular perturbation technique for different types of velocity boundary conditions, namely free-free, rigid-rigid, and lower rigid- upper free. It is observed that increasing the viscosity parameter, Λ, and the magnetic number, M1, is to hasten the onset of ferroconvection, while the nonlinearity of fluid magnetization, M3, is found to have no influence on the stability of the system. The critical stability parameters are found to be the same in the limiting cases of either no magnetic forces or no buoyancy forces.


Sign in / Sign up

Export Citation Format

Share Document