On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation

1991 ◽  
Vol 230 ◽  
pp. 97-116 ◽  
Author(s):  
E. B. Dussan V. ◽  
Enrique Ramé ◽  
Stephen Garoff

Over the past decade and a half, analyses of the dynamics of fluids containing moving contact lines have specified hydrodynamic models of the fluids in a rather small region surrounding the contact lines (referred to as the inner region) which necessarily differ from the usual model. If this were not done, a singularity would have arisen, making it impossible to satisfy the contact-angle boundary condition, a condition that can be important for determining the shape of the fluid interface of the entire body of fluid (the outer region). Unfortunately, the nature of the fluids within the inner region under dynamic conditions has not received appreciable experimental attention. Consequently, the validity of these novel models has yet to be tested.The objective of this experimental investigation is to determine the validity of the expression appearing in the literature for the slope of the fluid interface in the region of overlap between the inner and outer regions, for small capillary number. This in part involves the experimental determination of a constant traditionally evaluated by matching the solutions in the inner and outer regions. Establishing the correctness of this expression would justify its use as a boundary condition for the shape of the fluid interface in the outer region, thus eliminating the need to analyse the dynamics of the fluid in the inner region.Our experiments consisted of immersing a glass tube, tilted at an angle to the horizontal, at a constant speed, into a bath of silicone oil. The slope of the air–silicone oil interface was measured at distances from the contact line ranging between O.O13a. and O.17a, where a denotes the capillary length, the lengthscale of the outer region (1511 μm). Experiments were performed at speeds corresponding to capillary numbers ranging between 2.8 × 10-4 and 8.3 × 10-3. Good agreement is achieved between theory and experiment, with a systematic deviation appearing only at the highest speed. The latter may be a consequence of the inadequacy of the theory at that value of the capillary number.

1997 ◽  
Vol 352 ◽  
pp. 113-133 ◽  
Author(s):  
IVAN B. BAZHLEKOV ◽  
PETER J. SHOPOV

The presence of a three-phase region, where three immiscible phases are in mutual contact, causes additional difficulties in the investigation of many fluid mechanical problems. To surmount these difficulties some assumptions or specific hydrodynamic models have been used in the contact region (inner region). In the present paper an approach to the numerical solution of dynamic contact-line problems in the outer region is described. The influence of the inner region upon the outer one is taken into account by means of a solution of the integral mass and momentum conservation equations there. Both liquid–fluid–liquid and liquid–fluid–solid dynamic contact lines are considered. To support the consistency of this approach tests and comparisons with a number of experimental results are performed by means of finite-element numerical simulations.


1990 ◽  
Vol 221 ◽  
pp. 53-76 ◽  
Author(s):  
Steven J. Weinstein ◽  
E. B. Dussan ◽  
Lyle H. Ungar

The problem of viscous fingering in a Hele-Shaw cell with moving contact lines is considered. In contrast to the usual situation where the displaced fluid coats the solid surface in the form of thin films, here, both the displacing and the displaced fluids make direct contact with the solid. The principal differences between these two situations are in the ranges of attainable values of the gapwise component of the interfacial curvature (the component due to the bending of the fluid interface across the small gap of the Hele-Shaw cell), and in the introduction of two additional parameters for the case with moving contact lines. These parameters are the receding contact angle, and the sensivity of the dynamic angle to the speed of the contact line. Our objective is the prediction of the shape and widths of the fingers in the limit of small capillary number, Uμ/σ. Here, U denotes the finger speed, μ denotes the dynamic viscosity of the more viscous displaced fluid, and σ denotes the surface tension of the fluid interface. As might be expected, there are similarities and differences between the two problems. Despite the fact that different equations arise, we find that they can be analysed using the techniques introduced by McLean & Saffman and Vanden-Broeck for the thin-film case. The nature of the multiplicity of solutions also appears to be similar for the two problems. Our results indicate that when contact lines are present, the finger shapes are sensitive to the value of the contact angle only in the vicinity of its nose, reminiscent of experiments where bubbles or wires are placed at the nose of viscous fingers when thin films are present. On the other hand, in the present problem at least two distinct velocity scales emerge with well-defined asymptotic limits, each of these two cases being distinguished by the relative importance played by the two components of the curvature of the fluid interface. It is found that the widths of fingers can be significantly smaller than half the width of the cell.


1989 ◽  
Vol 209 ◽  
pp. 191-226 ◽  
Author(s):  
C. G. Ngan ◽  
E. B. Dussan V.

Our main objective is to identify a boundary-value problem capable of describing the dynamics of fluids having moving contact lines. A number of models have been developed over the past decade and a half for describing the dynamics of just such fluid systems. We begin by discussing the deficiencies of the methods used in some of these investigations to evaluate the parameters introduced by their models. In this study we are concerned exclusively with the formulation of a boundary-value problem which can describe the dynamics of the fluids excluding that lying instantaneously in the immediate vicinity of the moving contact line. From this perspective, many of the approaches referred to above are equivalent, that is to say they give rise to velocity fields with the same asymptotic structure near the moving contact line. Part of our objecive is to show that this asymptotic structure has only one parameter. A substantial portion of our investigation is devoted to determining whether or not the velocity field in a particular experiment has this asymptotic structure, and to measuring the value of the parameter.More specifically, we use the shape of the fluid interface in the vicinity of the moving contact line to identify the asymptotic structure of the dynamics of the fluid. Experiments are performed in which silicone oil displaces air through a gap formed between two parallel narrowly-spaced glass microscope slides sealed along two opposing sides. Since we were unable to make direct measurements of the shape of the fluid interface close to the moving contact line, an indirect procedure has been devised for determining its shape from measurements of the apex height of the meniscus. We find that the deduced fluid interface shape compares well with the asymptotic form identified in the studies referred to above; however, systematic deviations do arise. The origin of these deviations is unclear. They could be attributed to systematic experimental error, or, to the fact that our analysis (valid only for small values of the capillary number) is inadequate at the conditions of our experiments.


2008 ◽  
Vol 605 ◽  
pp. 59-78 ◽  
Author(s):  
XIAO-PING WANG ◽  
TIEZHENG QIAN ◽  
PING SHENG

We simulate the moving contact line in two-dimensional chemically patterned channels using a diffuse-interface model with the generalized Navier boundary condition. The motion of the fluid–fluid interface in confined immiscible two-phase flows is modulated by the chemical pattern on the top and bottom surfaces, leading to a stick–slip behaviour of the contact line. The extra dissipation induced by this oscillatory contact-line motion is significant and increases rapidly with the wettability contrast of the pattern. A critical value of the wettability contrast is identified above which the effect of diffusion becomes important, leading to the interesting behaviour of fluid–fluid interface breaking, with the transport of the non-wetting fluid being assisted and mediated by rapid diffusion through the wetting fluid. Near the critical value, the time-averaged extra dissipation scales as U, the displacement velocity. By decreasing the period of the pattern, we show the solid surface to be characterized by an effective contact angle whose value depends on the material characteristics and composition of the patterned surfaces.


2020 ◽  
Vol 117 (51) ◽  
pp. 32285-32292
Author(s):  
Martin Coux ◽  
John M. Kolinski

A gravity-driven droplet will rapidly flow down an inclined substrate, resisted only by stresses inside the liquid. If the substrate is compliant, with an elastic modulusG< 100 kPa, the droplet will markedly slow as a consequence of viscoelastic braking. This phenomenon arises due to deformations of the solid at the moving contact line, enhancing dissipation in the solid phase. Here, we pattern compliant surfaces with textures and probe their interaction with droplets. We show that the superhydrophobic Cassie state, where a droplet is supported atop air-immersed textures, is preserved on soft textured substrates. Confocal microscopy reveals that every texture in contact with the liquid is deformed by capillary stresses. This deformation is coupled to liquid pinning induced by the orientation of contact lines atop soft textures. Thus, compared to flat substrates, greater forcing is required for the onset of drop motion when the soft solid is textured. Surprisingly, droplet velocities down inclined soft or hard textured substrates are indistinguishable; the textures thus suppress viscoelastic braking despite substantial fluid–solid contact. High-speed microscopy shows that contact line velocities atop the pillars vastly exceed those associated with viscoelastic braking. This velocity regime involves less deformation, thus less dissipation, in the solid phase. Such rapid motions are only possible because the textures introduce a new scale and contact-line geometry. The contact-line orientation atop soft pillars induces significant deflections of the pillars on the receding edge of the droplet; calculations confirm that this does not slow down the droplet.


Author(s):  
Shi-Ming Li ◽  
Danesh K. Tafti

A mean-field free-energy lattice Boltzmann method (LBM) is applied to simulate moving contact line dynamics. It is found that the common bounceback boundary condition leads to an unphysical velocity at the solid wall in the presence of surface forces. The magnitude of the unphysical velocity is shown proportional to the local force term. The velocity-pressure boundary condition is generalized to solve the problem of the unphysical velocity. The simulation results are compared with three different theories for moving contact lines, including a hydrodynamic theory, a molecular kinetic theory, and a linear cosine law of moving contact angle versus capillary number. It is shown that the current LBM can be used to replace the three theories in handling moving contact line problems.


Author(s):  
Pablo Gómez ◽  
Adolfo Esteban ◽  
Claudio Zanzi ◽  
Joaquín López ◽  
Julio Hernández

Abstract We present a method based on a level set formulation to reproduce the behavior of the contact line on solid walls in the simulation of 3D unsteady interfacial flows characterized by large density ratios. The level set method poses a particular difficulty, related to the reinitialization procedure, when used in the simulation of interfacial flows in which the interface intersects a solid wall, due to the appearance of a blind zone where standard reinitialization procedures produce inconsistent results. The proposed method overcomes this difficulty by introducing a boundary condition for the level set function on the solid surface based on the normal extension of the contact angle from the interface along the solid wall. In order to reproduce the dynamics of the contact line we use a simplified model that imposes a boundary condition on the interface curvature based on the static contact angle, and define a thin slip zone at the solid wall around the contact line. To assess the accuracy and robustness of the proposed method, we conducted several preliminary numerical tests in three dimensions, whose results are compared with analytical solutions and other results available in the literature.


2010 ◽  
Vol 645 ◽  
pp. 279-294 ◽  
Author(s):  
PENGTAO YUE ◽  
CHUNFENG ZHOU ◽  
JAMES J. FENG

Diffuse-interface models may be used to compute moving contact lines because the Cahn–Hilliard diffusion regularizes the singularity at the contact line. This paper investigates the basic questions underlying this approach. Through scaling arguments and numerical computations, we demonstrate that the Cahn–Hilliard model approaches a sharp-interface limit when the interfacial thickness is reduced below a threshold while other parameters are fixed. In this limit, the contact line has a diffusion length that is related to the slip length in sharp-interface models. Based on the numerical results, we propose a criterion for attaining the sharp-interface limit in computing moving contact lines.


Sign in / Sign up

Export Citation Format

Share Document