Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number

1992 ◽  
Vol 237 ◽  
pp. 323-341 ◽  
Author(s):  
Renwei Mei ◽  
Ronald J. Adrian

Unsteady flow over a stationary sphere with a small fluctuation in the free-stream velocity is considered at small Reynolds number, Re. A matched asymptotic solution is obtained for the frequency-dependent (or the acceleration-dependent) part of the unsteady flow at very small frequency, ω, under the restriction St [Lt ] Re [Lt ] 1, where St is the Strouhal number. The acceleration-dependent part of the unsteady drag is found to be proportional to St ∼ ω instead of the ω½ dependence predicted by Stokes’ solution. Consequently, the expression for the Basset history force is incorrect for large time even for very small Reynolds numbers. Present results compare well with the previous numerical results of Mei, Lawrence & Adrian (1991) using a finite-difference method for the same unsteady flow at small Reynolds number. Using the principle of causality, the present analytical results at small Re, the numerical results at finite Re for low frequency, and Stokes’ results for high frequency, a modified expression for the history force is proposed in the time domain. It is confirmed by comparing with the finite-difference results at arbitrary frequency through Fourier transformation. The modified history force has an integration kernel that decays as t−2, instead of t½, at large time for both small and finite Reynolds numbers.

1994 ◽  
Vol 270 ◽  
pp. 133-174 ◽  
Author(s):  
Renwei Mei

Unsteady flow due to an oscillating sphere with a velocity U0cosωt’, in which U0 and ω are the amplitude and frequency of the oscillation and t’ is time, is investigated at finite Reynolds number. The methods used are: (i) Fourier mode expansion in the frequency domain; (ii) a time-dependent finite difference technique in the time domain; and (iii) a matched asymptotic expansion for high-frequency oscillation. The flow fields of the steady streaming component, the second and third harmonic components are obtained with the fundamental component. The dependence of the unsteady drag on ω is examined at small and finite Reynolds numbers. For large Stokes number, ε = (ωa2/2v)½ [Gt ] 1, in which a is the radius of the sphere and v is the kinematic viscosity, the numerical result for the unsteady drag agrees well with the high-frequency asymptotic solution; and the Stokes (1851) solution is valid for finite Re at ε [Gt ] 1. For small Strouhal number, St = ωa/U0 [Lt ] 1, the imaginary component of the unsteady drag (Scaled by 6πU0pfva, in which Pf is the fluid density) behaves as Dml ∼ (h0Stlog St–h1St), m = 1,3,5… This is in direct contrast to an earlier result obtained for an unsteady flow over a stationary sphere with a small-amplitude oscillation in the free-stream velocity (hereinafter referred to as the SA case) in which D1∼ –h1St (Mei, Lawrence & Adrian 1991). Computations for flow over a sphere with a free-stream velocity U0(1–α1+α1cosωt’) at Re = U02a/v = 0.2 and St [Lt ] 1 show that h0 for the first mode varies from 0 (at α1 = 0) to around 0.5 (at α1 = 1) and that the SA case is a degenerated case in which the logarithmic dependence of the drag in St is suppressed by the strong mean uniform flow.The numerical results for the unsteady drag are used to examine an approximate particle dynamic equation proposed for spherical particles with finite Reynolds number. The equation includes a quasi-steady drag, an added-mass force, and a modified history force. The approximate expression for the history force in the time domain compares very well with the numerical results of the SA case for all frequencies; it compares favourably for the PO case for moderate and high frequencies; it underestimates slightly the history force for the PO case at low frequency. For a solid sphere settling in a stagnant liquid with zero initial velocity, the velocity history is computed using the proposed particle dynamic equation. The results compare very well with experimental data of Moorman (1955) over a large range of Reynolds numbers. The present particle dynamic equation at finite Re performs consistently better than that proposed by Odar & Hamilton (1964) both qualitatively and quantitatively for three different types of spatially uniform unsteady flows.


Author(s):  
Mohammad Javad Izadi ◽  
Pegah Asghari ◽  
Malihe Kamkar Delakeh

The study of flow around bluff bodies is important, and has many applications in industry. Up to now, a few numerical studies have been done in this field. In this research a turbulent unsteady flow round a cube is simulated numerically. The LES method is used to simulate the turbulent flow around the cube since this method is more accurate to model time-depended flows than other numerical methods. When the air as an ideal fluid flows over the cube, flow separate from the back of the body and unsteady vortices appears, causing a large wake behind the cube. The Near-Wake (wake close to the body) plays an important role in determining the steady and unsteady forces on the body. In this study, to see the effect of the free stream velocity on the surface pressure behind the body, the Reynolds number is varied from one to four million and the pressure on the back of the cube is calculated numerically. From the results of this study, it can be seen that as the velocity or the Reynolds number increased, the pressure on the surface behind the cube decreased, but the rate of this decrease, increased as the free stream flow velocity increased. For high free stream velocities the base pressure did not change as much and therefore the base drag coefficient stayed constant (around 1.0).


1991 ◽  
Vol 233 ◽  
pp. 613-631 ◽  
Author(s):  
Renwei Mei ◽  
Christopher J. Lawrence ◽  
Ronald J. Adrian

Unsteady flow over a stationary sphere with small fluctuations in the free-stream velocity is considered at finite Reynolds number using a finite-difference method. The dependence of the unsteady drag on the frequency of the fluctuations is examined at various Reynolds numbers. It is found that the classical Stokes solution of the unsteady Stokes equation does not correctly describe the behaviour of the unsteady drag at low frequency. Numerical results indicate that the force increases linearly with frequency when the frequency is very small instead of increasing linearly with the square root of the frequency as the classical Stokes solution predicts. This implies that the force has a much shorter memory in the time domain. The incorrect behaviour of the Basset force at large times may explain the unphysical results found by Reeks & Mckee (1984) wherein for a particle introduced to a turbulent flow the initial velocity difference between the particle and fluid has a finite contribution to the long-time particle diffusivity. The added mass component of the force at finite Reynolds number is found to be the same as predicted by creeping flow and potential theories. Effects of Reynolds number on the unsteady drag due to the fluctuating free-stream velocity are presented. The implications for particle motion in turbulence are discussed.


1991 ◽  
Vol 113 (3) ◽  
pp. 384-398 ◽  
Author(s):  
M. P. Arnal ◽  
D. J. Goering ◽  
J. A. C. Humphrey

The characteristics of the flow around a bluff body of square cross-section in contact with a solid-wall boundary are investigated numerically using a finite difference procedure. Previous studies (Taneda, 1965; Kamemoto et al., 1984) have shown qualitatively the strong influence of solid-wall boundaries on the vortex-shedding process and the formation of the vortex street downstream. In the present study three cases are investigated which correspond to flow past a square rib in a freestream, flow past a rib on a fixed wall and flow past a rib on a sliding wall. Values of the Reynolds number studied ranged from 100 to 2000, where the Reynolds number is based on the rib height, H, and bulk stream velocity, Ub. Comparisons between the sliding-wall and fixed-wall cases show that the sliding wall has a significant destabilizing effect on the recirculation region behind the rib. Results show the onset of unsteadiness at a lower Reynolds number for the sliding-wall case (50 ≤ Recrit ≤100) than for the fixed-wall case (Recrit≥100). A careful examination of the vortex-shedding process reveals similarities between the sliding-wall case and both the freestream and fixed-wall cases. At moderate Reynolds numbers (Re≥250) the sliding-wall results show that the rib periodically sheds vortices of alternating circulation in much the same manner as the rib in a freestream; as in, for example, Davis and Moore [1982]. The vortices are distributed asymmetrically downstream of the rib and are not of equal strength as in the freestream case. However, the sliding-wall case shows no tendency to develop cycle-to-cycle variations at higher Reynolds numbers, as observed in the freestream and fixed-wall cases. Thus, while the moving wall causes the flow past the rib to become unsteady at a lower Reynolds number than in the fixed-wall case, it also acts to stabilize or “lock-in” the vortex-shedding frequency. This is attributed to the additional source of positive vorticity immediately downstream of the rib on the sliding wall.


Author(s):  
Amir Hossein Birjandi ◽  
Eric Bibeau

A four-bladed, squirrel-cage, and scaled vertical kinetic turbine was designed, instrumented and tested in the water tunnel facilities at the University of Manitoba. With a solidity of 1.3 and NACA0021 blade profile, the turbine is classified as a high solidity model. Results were obtained for conditions during freewheeling at various Reynolds numbers. In this study, the freewheeling tip speed ratio, which relates the ratio of maximum blade speed to the free stream velocity at no load, was divided into three regions based on the Reynolds number. At low Reynolds numbers, the tip speed ratio was lower than unity and blades were in a stall condition. At the end of the first region, there was a sharp increase of the tip speed ratio so the second region has a tip speed ratio significantly higher than unity. In this region, the tip speed ratio increases almost linearly with Reynolds number. At high Reynolds numbers, the tip speed ratio is almost independent of Reynolds number in the third region. It should be noted that the transition between these three regions is a function of the blade profile and solidity. However, the three-region behavior is applicable to turbines with different profiles and solidities.


Author(s):  
Gorazd Medic ◽  
Om Sharma

Flow over three low-pressure turbine airfoils presented in [1] is analyzed for a range of Reynolds numbers (30,000 to 150,000) by means of large-eddy simulation. Baseline computational grid for these 2D linear cascade configurations consisted of 35 millions cells, and additional finer grids of 70 millions cells were used for grid sensitivity studies. For these low Reynolds number flows, this represents a quasi-DNS resolution which minimizes the role of the subgrid-scale model — however, WALE subgrid-scale model [7] was still employed. The configurations were analyzed for low free-stream turbulence intensity, as well as for 4% turbulence intensity at free-stream. Laminar separation exists on the suction side, and, depending on the Reynolds number, the flow at the outer edge of the separation either transitions, and the separation closes before the trailing edge, or not. Detailed comparisons to measurements are presented for computed surface pressure and total pressure losses over the range of Reynolds numbers for all three airfoils; these show that LES analyses are able to capture the main trends across all three geometries.


1994 ◽  
Vol 277 ◽  
pp. 347-379 ◽  
Author(s):  
Eugene J. Chang ◽  
Martin R. Maxey

A direct numerical simulation, based on spectral methods, has been used to compute the time-dependent, axisymmetric viscous flow past a rigid sphere. An investigation has been made for oscillatory flow about a zero mean for different Reynolds numbers and frequencies. The simulation has been verified for steady flow conditions, and for unsteady flow there is excellent agreement with Stokes flow theory at very low Reynolds numbers. At moderate Reynolds numbers, around 20, there is good general agreement with available experimental data for oscillatory motion. Under steady flow conditions no separation occurs at Reynolds number below 20; however in an oscillatory flow a separation bubble forms on the decelerating portion of each cycle at Reynolds numbers well below this. As the flow accelerates again the bubble detaches and decays, while the formation of a new bubble is inhibited till the flow again decelerates. Steady streaming, observed for high frequencies, is also observed at low frequencies due to the flow separation. The contribution of the pressure to the resultant force on the sphere includes a component that is well described by the usual added-mass term even when there is separation. In a companion paper the flow characteristics for constant acceleration or deceleration are reported.


1990 ◽  
Vol 220 ◽  
pp. 459-484 ◽  
Author(s):  
H. M. Badr ◽  
M. Coutanceau ◽  
S. C. R. Dennis ◽  
C. Ménard

The unsteady flow past a circular cylinder which starts translating and rotating impulsively from rest in a viscous fluid is investigated both theoretically and experimentally in the Reynolds number range 103 [les ] R [les ] 104 and for rotational to translational surface speed ratios between 0.5 and 3. The theoretical study is based on numerical solutions of the two-dimensional unsteady Navier–Stokes equations while the experimental investigation is based on visualization of the flow using very fine suspended particles. The object of the study is to examine the effect of increase of rotation on the flow structure. There is excellent agreement between the numerical and experimental results for all speed ratios considered, except in the case of the highest rotation rate. Here three-dimensional effects become more pronounced in the experiments and the laminar flow breaks down, while the calculated flow starts to approach a steady state. For lower rotation rates a periodic structure of vortex evolution and shedding develops in the calculations which is repeated exactly as time advances. Another feature of the calculations is the discrepancy in the lift and drag forces at high Reynolds numbers resulting from solving the boundary-layer limit of the equations of motion rather than the full Navier–Stokes equations. Typical results are given for selected values of the Reynolds number and rotation rate.


2005 ◽  
Vol 57 (3) ◽  
pp. 116-120 ◽  
Author(s):  
Suat Canbazoğlu ◽  
Fazıl Canbulut

PurposeThe main objective of this study was to obtain the flow restricting capacity by determining their flow coefficients and to investigate the unsteady flow with low Reynolds number in the flow‐restricting devices such as orifices and capillary tubes having small diameters.Design/methodology/approachThere is an enormous literature on the flow of Newtonian fluids through capillaries and orifices particularly in many application fields of the mechanical and chemical engineering. But most of the experimental results in literature are given for steady flows at moderate and high Reynolds numbers (Re>500). In this study, the unsteady flow at low Reynolds number (10<Re<650) through flow‐restricting devices such as orifices and capillary tubes having very small diameters between 0.35 and 0.70 mm were experimentally investigated.FindingsThe capillary tubes have much more capillarity property with respect to equal diameter orifices. Increasing the ratio of capillary tube length to tube diameter and decreasing the ratio of orifice diameter to pipe diameter before orifice increase the throttling or restricting property of the orifices and the capillary tubes. The orifices can be preferred to the capillary tubes having the same diameter at the same system pressure for the hydraulic systems or circuits requiring small velocity variations. The capillary tubes provide higher pressure losses and they can be also used as hydraulic accumulators in hydraulic control devices to attenuate flow‐induced vibrations because of their large pressure coefficients. An important feature of the results obtained for capillary tubes and small orifices is that as the d/D for orifices increases and the L/d reduces for capillary tubes, higher values C are obtained and the transition from viscous to inertia‐controlled flow appears to take place at lower Reynolds numbers. This may be explained by the fact that for small orifices with high d/D ratios and for capillary tubes with small L/d ratios, the losses due to viscous shear are small. Another important feature of the results is that the least variations in C for small orifices and the higher variations in C for capillary tubes occur when the d/D and L/d ratios are smallest. This has favourable implications in hydraulic control devices since a constant value for the C may be assumed even at relatively low values of Re.Originality/valueTo the authors' knowledge, there is not enough information in the literature about the flow coefficients of unsteady flows through capillary tubes and small orifices at low Reynolds numbers. This paper fulfils this gap.


2014 ◽  
Vol 493 ◽  
pp. 140-144
Author(s):  
Astu Pudjanarsa ◽  
Ardian Ardawalika

Experimental study on the effect of Reynolds number variation on drag force for various cut angles on D-type cylinders was performed. Five different cut angles on different cylinders were applied including: 35o, 45o, 53o, 60o, and 65o. The free stream velocity was varied so the Reynolds number also varied.The experiment was carried out at a subsonic wind tunnel. Drag force for a cut D-type cylinder (for example 35o) was measured using a force balance and wind speed was varied so that corresponding Reynolds number of 2.4×104÷5.3×104 were achieved. Wind turning angle was kept at 0o (without turning angle). This experiment repeated for other D-type cylinders.Experiment results show that, for all D-type cylinders, drag force decreased as the Reynolds number increased, then it was increased after attain minimum drag force. For all D-type cylinders and all variations of Reynolds number the drag minimum is attained at cut angle of 53o. This value is appropriate with previous experiment results.


Sign in / Sign up

Export Citation Format

Share Document