Analogy between laminar flows in curved pipes and orthogonally rotating pipes

1994 ◽  
Vol 268 ◽  
pp. 133-145 ◽  
Author(s):  
Hiroshi Ishigaki

The secondary flow of a viscous fluid, caused by the Coriolis force, through a straight pipe rotating about an axis perpendicular to the pipe axis is analogous to that of a fluid, caused by the centrifugal force, through a stationary curved pipe. The quantitative analogy between these two fully developed laminar flows will be demonstrated through similarity arguments, computational studies and the use of experimental data. Similarity considerations result in two analogous governing parameters for each flow, which include a new one for the rotating flow. When one of these analogous pairs of parameters of the two flows is large, it will be demonstrated that there are strong similarities between the two flows regarding friction factors, heat transfer rates, flow patterns and flow properties for the same values of the other pair of parameters.

1996 ◽  
Vol 307 ◽  
pp. 1-10 ◽  
Author(s):  
Hiroshi Ishigaki

A quantitative analogy between fully developed turbulent flows in curved pipes and orthogonally rotating pipes will be described through similarity arguments, the use of experimental data and computational results. A pair of similarity parameters will be derived for each turbulent flow, so that they have the same dynamical meaning as those of laminar flows. When the second parameter for each flow is large enough, it will be shown that friction factors, as well as heat transfer rates, of the two flows coincide for equal values of the fundamental parameters. Computed contours of velocity and temperature will also reveal strong similarities between the two flows.


Author(s):  
Hung Nguyen ◽  
Shoubo Wang ◽  
Ram S. Mohan ◽  
Ovadia Shoham ◽  
Gene Kouba

Even though there have been several studies conducted by the industry on the use of different inlet devices for gas-liquid separation there have been limited laboratory and field evaluations on the use of external piping configurations as flow conditioning devices upstream of a separator inlet. The results of a systematic study of droplet deposition and coalescence in curved pipe and pipe fittings are reported in this paper. A facility has been designed consisting of two main test sections: a fixed horizontal straight pipe section and an interchangeable 180° return pipe section (or curved pipe section) of the same length. Both inlet and outlet to the 180° return are horizontal, but the plane of the 180° return pipe section can pivot about the axis of the inlet horizontal pipe to an angle as much as 10° downwards allowing downward flow in the return section. Various pipe fittings of different radius of curvature can be installed for comparison in the 180° return. Fittings evaluated in this study included: 180° pipe bend, 2 standard radius elbows (with radius of curvature of 1.5D), 2 long radius elbows (with radius of curvature of 6D), 2 target tee bend, and 2 cushion tee bend. Experiments have been carried out using water and air and varying gas velocities and liquid loadings. In order to compare the performance of geometries, Droplet Deposition Fractions (DDF) were measured in the horizontal straight pipe section and in the 180° return pipe section as a measure of coalescence efficiency. The results demonstrate that higher DDF occurs for curved fittings as compared to the straight pipe section. Two standard (short) radius elbows bend have approximately 10% DDF higher, whereas two long radius elbows along with 180° pipe bend perform better (by 15–20% DDF) than straight pipe. Additionally, no significant differences between DDF’s in three different inclination angles of a curved pipe were observed. It was found that the cushion tees and target tees can coalesce droplets at lower gas velocities but break up droplets at higher gas velocities. It can be concluded that 180° pipe bend or two 6D long radii elbows can serve as a droplet coalescer, a pair of cushion tees or target tee can also work as coalescer at low kinetic energy but as atomizers at high kinetic energy.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Hung Nguyen ◽  
Shoubo Wang ◽  
Ram S. Mohan ◽  
Ovadia Shoham ◽  
Gene Kouba

Even though there have been several studies conducted by the industry on the use of different inlet devices for gas–liquid separation, there have been limited laboratory and field evaluations on the use of external piping configurations as flow conditioning devices upstream of a separator inlet. The results of a systematic study of droplet deposition and coalescence in curved pipe and pipe fittings are reported in this paper. A facility has been designed consisting of two main test sections: a fixed horizontal straight pipe section and an interchangeable 180 deg return pipe section (or curved pipe section) of the same length. Both inlet and outlet to the 180 deg return are horizontal, but the plane of the 180 deg return pipe section can pivot about the axis of the inlet horizontal pipe to an angle as much as 10 deg downwards allowing downward flow in the return section. Various pipe fittings of different radius of curvature can be installed for comparison in the 180 deg return. Fittings evaluated in this study included: 180 deg pipe bend, short elbow bend (with standard radius of curvature of 1.5D), long elbow bend (with custom radius of curvature of 6D), target tee bend, and cushion tee bend. Experiments have been carried out using water and air, and varying gas velocities and liquid loadings. In order to compare the performance of geometries, Droplet Deposition Fractions (DDF) were measured in the horizontal straight pipe section and in the 180 deg return pipe section as a measure of coalescence efficiency. The results demonstrate that higher DDF occurs for curved fittings as compared to the straight pipe section. The short elbow bend has approximately 10% DDF higher, whereas long elbow bend along with 180 deg pipe bend perform better (by 15–20% DDF) than straight pipe. It was found that the cushion tee and target tee bends can coalesce droplets at lower gas velocities but break up droplets at higher gas velocities. Additionally, no significant differences between DDF's in three different inclination angles of a curved pipe were observed. It can be concluded that 180 deg pipe bend or two 6D long radius elbow bend can serve as a droplet coalescer; a pair of cushion tees or target tees can also work as coalescers at low kinetic energy but as atomizers at high kinetic energy.


Summary .—Experiments are described in which coloured fluid is introduced through a small hole in the side of a glass helix through which water is running. The conclusion reached by Mr. C. M. White, as a result of resistance measurements, that a higher speed of flow is necessary to maintain turbulence in a curved pipe than in a straight one, is verified directly. In a pipe bent into a helix the diameter of which was 18 times that of the cross-section, steady stream-line motion persisted up to a Reynolds number, 5830, i. e ., 2·8 times Reynolds' criterion for a straight pipe. This occurred in spite of the fact that the flow was highly turbulent on entering the helix.


1977 ◽  
Vol 99 (3) ◽  
pp. 444-453 ◽  
Author(s):  
J. T. Boyle ◽  
J. Spence

The redistribution of stress in a linear, thin shell model of a curved pipe creeping under the action of a constant applied in-plane bending moment is represented by an equation of evolution in time. Using finite differences, this continuous system is reduced to a finite set of initial value problems which are numerically integrated using a fifth order Runge-Kutta method. The flexibility of the curved pipe is compared to that of a similar elastic, and a similarly creeping, straight pipe. Results are compared with two simple approximate methods and with a previous-steady state analysis.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Quanlin Dong ◽  
Pengfei Wang

In order to understand the mechanism of fluid flows in curved pipes, a large number of theoretical and experimental researches have been performed. As a critical parameter of curved pipe, the curvature ratioδhas received much attention, but most of the values ofδare very small (δ<0.1) or relatively small (δ≤0.5). As a preliminary study and simulation this research studied the fluid flow in a 90-degree curved pipe of large curvature ratio. The Detached Eddy Simulation (DES) turbulence model was employed to investigate the fluid flows at the Reynolds number range from 5000 to 20000. After validation of the numerical strategy, the pressure and velocity distribution, pressure drop, fluid flow, and secondary flow along the curved pipe were illustrated. The results show that the fluid flow in a curved pipe with large curvature ratio seems to be unlike that in a curved pipe with small curvature ratio. Large curvature ratio makes the internal flow more complicated; thus, the flow patterns, the separation region, and the oscillatory flow are different.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 767-775 ◽  
Author(s):  
Djamel Sahel ◽  
Houari Ameur ◽  
Touhami Baki

The baffling technique is well-known for its efficiency in terms of enhancement of heat transfer rates throught channels. However, the baffles insert is accompanied by an increase in the friction factor. This issue remains a great challenge for the designers of heat exchangers. To overcome this issue, we suggest in the present paper a new design of baffles which is here called graded baffle-design. The baffles have an up- or down-graded height along the channel length. This geometry is characterized by two ratios: up-graded baffle ratio and down-graded baffle ratio which are varied from 0-0.08. For a range of Reynolds number varying from 104 to 2 ? 104, the turbulent flow and heat transfer characteristics of a heat exchanger channel are numerically studied by the computer code FLUENT. The obtained results revealed an enhancement in the thermohydraulic performance offered by the new suggested design. For the channel with a down-graded baffle ratio equal to 0.08, the friction factors decreased by 4-8%


Author(s):  
Smith Eiamsa-ard ◽  
Vichan Kongkaitpaiboon ◽  
Khwanchit Wongcharee

This paper reports the experimental investigation of local convective heat transfer enhancement, flow friction and thermal performance factor behaviors in the tube fitted with the short helical tapes (SHTs) acting as decaying swirl flow generators. The tapes with three different helical tape angles (? = 90°, 135° and 180°) and three different channel numbers (N = 2, 3 and 4 channels) were tested under the uniform wall heat flux condition. The performance of each tape is compared with the performance of the plain tube subject to the same pumping power. The experimental results show that the heat transfer rates and friction factors of the tube with SHTs are respectively in range of 1.15 to 1.9 and 1.49 to 2.31 times of those in the plain, corresponding to thermal performances between 0.98 and 1.46. The correlations for Nusselt number (Nu) as a function of Reynolds number (Re), Prandtl number (Pr), helical tape angle (?) and the number of channel (N) are also developed.


Sign in / Sign up

Export Citation Format

Share Document