Mass transport of interfacial waves in a two-layer fluid system

1995 ◽  
Vol 297 ◽  
pp. 231-254 ◽  
Author(s):  
Jiangang Wen ◽  
Philip L.-F. Liu

Effects of viscous damping on mass transport velocity in a two-layer fluid system are studied. A temporally decaying small-amplitude interfacial wave is assumed to propagate in the fluids. The establishment and the decay of mean motions are considered as an initial-boundary-value problem. This transient problem is solved by using a Laplace transform with a numerical inversion. It is found that thin ‘second boundary layers’ are formed adjacent to the interfacial Stokes boundary layers. The thickness of these second boundary layers is of O(ε1/2) in the non-dimensional form, where ε is the dimensionless Stokes boundary layer thickness defined as $\epsilon = \hat{k}\hat{\delta}=\hat{k}(2\hat{v}/\hat{\sigma})^{1/2}$ for an interfacial wave with wave amplitude â, wavenumber $\hat{k}$ and frequency $\hat{\sigma}$ in a fluid with viscosity $\hat{v}$. Inside the second boundary layers there exists a strong steady streaming of O(α2ε−1/2), where $\alpha = \hat{k}\hat{a}$ is the surface wave slope. The mass transport velocity near the interface is much larger than that in a single-layer system, which is O(α2) (e.g. Longuet-Higgins 1953; Craik 1982). In the core regions outside the thin second boundary layers, the mass transport velocity is enhanced by the diffusion of the mean interfacial velocity and vorticity. Because of vertical diffusion and viscous damping of the mean interfacial vorticity, the ‘interfacial second boundary layers’ diminish as time increases. The mean motions eventually die out owing to viscous attenuation. The mass transport velocity profiles are very different from those obtained by Dore (1970, 1973) which ignored viscous attenuation. When a temporally decaying small-amplitude surface progressive wave is propagating in the system, the mean motions are found to be much less significant, O(α2).

1966 ◽  
Vol 1 (10) ◽  
pp. 11 ◽  
Author(s):  
Arthur Brebner ◽  
J.A. Askew ◽  
S.W. Law

On the basis of non-viscous small amplitude firstorder theory the maximum value of the horizontal orbital motion at the bed in water of constant depth his given by /U/n yy* »* " r •»** */i where k = /L, H is the wave height crest to trough, T is the period, and L the wave length (L = Sry2jr Arf 2*%/L ). On the basis of finite amplitude wave theory where the particle orbits are not closed ana by the insertion of the viscous laminar boundary layer (the conducti6n solution) the mean drift velocity or mass transport velocity on a perfectly smooth bed is given by Longuet- Higgins (1952) as 7, K H* kcr where


1976 ◽  
Vol 76 (4) ◽  
pp. 819-828 ◽  
Author(s):  
B. D. Dore

The double-boundary-layer theory of Stuart (1963, 1966) and Riley (1965, 1967) is employed to investigate the mass transport velocity due to two-dimensional standing waves in a system comprising two homogeneous fluids of different densities and viscosities. The most important double-boundary-layer structure occurs in the neighbourhood of the oscillating interface, and the possible existence of jet-like motions is envisaged at nodal positions, owing to the nature of the mean flows in the layers. In practice, the magnitude of the mass transport velocity can be a significant fraction of that of the primary, oscillatory velocity.


It was shown by Stokes that in a water wave the particles of fluid possess, apart from their orbital motion, a steady second-order drift velocity (usually called the mass-transport velocity). Recent experiments, however, have indicated that the mass-transport velocity can be very different from that predicted by Stokes on the assumption of a perfect, non-viscous fluid. In this paper a general theory of mass transport is developed, which takes account of the viscosity, and leads to results in agreement with observation. Part I deals especially with the interior of the fluid. It is shown that the nature of the motion in the interior depends upon the ratio of the wave amplitude a to the thickness d of the boundary layer: when a 2 / d 2 is small the diffusion of vorticity takes place by viscous ‘conduction’; when a 2 / d 2 is large, by convection with the mass-transport velocity. Appropriate field equations for the stream function of the mass transport are derived. The boundary layers, however, require separate consideration. In part II special attention is given to the boundary layers, and a general theory is developed for two types of oscillating boundary: when the velocities are prescribed at the boundary, and when the stresses are prescribed. Whenever the motion is simple-harmonic the equations of motion can be integrated exactly. A general method is described for determining the mass transport throughout the fluid in the presence of an oscillating body, or with an oscillating stress at the boundary. In part III, the general method of solution described in parts I and II is applied to the cases of a progressive and a standing wave in water of uniform depth. The solutions are markedly different from the perfect-fluid solutions with irrotational motion. The chief characteristic of the progressivewave solution is a strong forward velocity near the bottom. The predicted maximum velocity near the bottom agrees well with that observed by Bagnold.


1968 ◽  
Vol 1 (11) ◽  
pp. 15 ◽  
Author(s):  
Hideaki Noda

This paper deals with the mass transport in the boundary layers developed on smooth and horizontal bottoms by standing waves in shallow water. In a theoretical approach, the basic equations of laminar boundary layers are applied to solving the oscillatory motion in the boundary layers caused by the standing waves. The mass transport velocities are derived on the basis of solutions of the second approximation which describe the flow velocity near the bottom, and the effects of convective terms involved in the basic equations are investigated. Experimental measurements in standing waves of mass transport velocity in the bottom boundary layer were carried out using dye-streak and solid-particle methods. The experimental data are compared with the theoretical prediction.


1994 ◽  
Vol 266 ◽  
pp. 121-145 ◽  
Author(s):  
Jiangang Wen ◽  
Philip L.-F. Liu

Mass transport under partially reflected waves in a rectangular channel is studied. The effects of sidewalls on the mass transport velocity pattern are the focus of this paper. The mass transport velocity is governed by a nonlinear transport equation for the second-order mean vorticity and the continuity equation of the Eulerian mean velocity. The wave slope, ka, and the Stokes boundary-layer thickness, k (ν/σ)½, are assumed to be of the same order of magnitude. Therefore convection and diffusion are equally important. For the three-dimensional problem, the generation of second-order vorticity due to stretching and rotation of a vorticity line is also included. With appropriate boundary conditions derived from the Stokes boundary layers adjacent to the free surface, the sidewalls and the bottom, the boundary value problem is solved by a vorticity-vector potential formulation; the mass transport is, in gneral, represented by the sum of the gradient of a scalar potential and the curl of a vector potential. In the present case, however, the scalar potential is trivial and is set equal to zero. Because the physical problem is periodic in the streamwise direction (the direction of wave propagation), a Fourier spectral method is used to solve for the vorticity, the scalar potential and the vector potential. Numerical solutions are obtained for different reflection coefficients, wave slopes, and channel cross-sectional geometry.


The mass transport velocity in water waves propagating over an elastic bed is investigated. Water is assumed to be incompressible and slightly viscous. The elastic bed is also incompressible and satisfies the Hooke’s law. For a small amplitude progressive wave perturbation solutions via a boundary-layer approach are obtained. Because the wave amplitude is usually larger than the viscous boundary layer thickness and because the free surface and the interface between water and the elastic bed are moving, an orthogonal curvilinear coordinate system (Longuet-Higgins 1953) is used in the analysis of free surface and interfacial boundary layers so that boundary conditions can be applied on the actual moving surfaces. Analytical solutions for the mass transport velocity inside the boundary layer adjacent to the elastic seabed and in the core region of the water column are obtained. The mass transport velocity above a soft elastic bed could be twice of that over a rigid bed in the shallow water.


1983 ◽  
Vol 10 (1) ◽  
pp. 142-149 ◽  
Author(s):  
Michael C. Quick

Sediment transport is measured under the combined action of waves and currents. Measurements are made with currents in the direction of wave advance and with currents opposing the wave motion. Theoretical relationships are considered that predict the wave velocity field and the mass transport velocity for zero current and for steady currents.Following Bagnold's approach, a transport power relationship is developed to predict the sediment transport rate. Making assumptions for the mass transport velocity, the transport power is shown to agree with the measured sediment transport rates. It is particularly noted that the sediment transport direction is mainly determined by the direction of wave movement, even for adverse currents, until the waves start to break. Keywords: sediment transport, waves and currents, coastal engineering.


Author(s):  
M. S. Longuet-Higgins

ABSTRACTThe following theorems are proved for irrotational surface waves of finite amplitude in a uniform, incompressible fluid:(a) In any space-periodic motion (progressive or otherwise) in uniform depth, the mean square of the velocity is a decreasing function of the mean depth z below the surface. Hence the fluctuations in the mean pressure increase with z.(b) In any space-periodic motion in infinite depth, the particle motion tends to zero exponentially as z tends to infinity. The pressure fluctuations at great depths are therefore simultaneous, but they do not in general tend to zero.(c) In a progressive periodic wave in uniform depth the mass-transport velocity is a decreasing function of the mean depth of a particle below the free surface, and the tangent to the velocity profile is vertical at the bottom. This result conflicts with observations in wave tanks, and shows that the waves cannot be wholly irrotational.(d) Analogous results are proved for the solitary wave.


Sign in / Sign up

Export Citation Format

Share Document