The growth of periodic waves in gas-fluidized beds

1996 ◽  
Vol 325 ◽  
pp. 261-282 ◽  
Author(s):  
S. E. Harris

In this paper, we analyse the development of initially small, periodic, voidage disturbances in gas-fluidized beds. The one-dimensional model was proposed by Needham & Merkin (1983), and Crighton (1991) showed that weakly nonlinear waves satisfied a perturbed Korteweg–de Vries or KdV equation. Here, we take periodic cnoidal wave solutions of the KdV equation and follow their evolution when the perturbation terms are amplifying. Initially, all such waves grow, but at a later stage a rescaling shows that shorter wavelengths are stabilized in a weakly nonlinear state. Longer wavelengths continue to develop and eventually strongly nonlinear solutions are required. Necessary conditions for periodic waves are found and matching back onto the growing cnoidal waves is possible. It is shown further that these fully nonlinear waves also reach an equilibrium state. A comparison with numerical results from Needham & Merkin (1986) and Anderson, Sundaresan & Jackson (1995) is then carried out.

2020 ◽  
Vol 15 ◽  

Discovered experimentally by Russell and described theoretically by Korteweg and de Vries, KdV equation has been a nonlinear evolution equation describing the propagation of weakly dispersive and weakly nonlinear waves. This equation received a lot of attention from mathematical and physical communities as an integrable equation. The objectives of this paper are: first, providing a rigorous mathematical derivation of an extended KdV equations, one on the velocity, other on the surface elevation, next, solving explicitly the one on the velocity. In order to derive rigorously these equations, we will refer to the definition of consistency, and to find an explicit solution for this equation, we will use the sine-cosine method. As a result of this work, a rigorous justification of the extended Kdv equation of fifth order will be done, and an explicit solution of this equation will be derived.


2007 ◽  
Vol 73 (6) ◽  
pp. 933-946
Author(s):  
S. PHIBANCHON ◽  
M. A. ALLEN ◽  
G. ROWLANDS

AbstractWe determine the growth rate of linear instabilities resulting from long-wavelength transverse perturbations applied to periodic nonlinear wave solutions to the Schamel–Korteweg–de Vries–Zakharov–Kuznetsov (SKdVZK) equation which governs weakly nonlinear waves in a strongly magnetized cold-ion plasma whose electron distribution is given by two Maxwellians at slightly different temperatures. To obtain the growth rate it is necessary to evaluate non-trivial integrals whose number is kept to a minimum by using recursion relations. It is shown that a key instance of one such relation cannot be used for classes of solution whose minimum value is zero, and an additional integral must be evaluated explicitly instead. The SKdVZK equation contains two nonlinear terms whose ratio b increases as the electron distribution becomes increasingly flat-topped. As b and hence the deviation from electron isothermality increases, it is found that for cnoidal wave solutions that travel faster than long-wavelength linear waves, there is a more pronounced variation of the growth rate with the angle θ at which the perturbation is applied. Solutions whose minimum values are zero and which travel slower than long-wavelength linear waves are found, at first order, to be stable to perpendicular perturbations and have a relatively narrow range of θ for which the first-order growth rate is not zero.


1999 ◽  
Vol 23 (2) ◽  
pp. 253-265
Author(s):  
H. Demiray

In this work, we study the propagation of weakly nonlinear waves in a prestressed thin elastic tube filled with an inviscid fluid. In the analysis, considering the physiological conditions under which the arteries function, the tube is assumed to be subjected to a uniform pressure P0 and a constant axial stretch ratio λz. In the course of blood flow in arteries, it is assumed that a finite time dependent radial displacement is superimposed on this static field but, due to axial tethering, the effect of axial displacement is neglected. The governing nonlinear equation for the radial motion of the tube under the effect of fluid pressure is obtained. Using the exact nonlinear equations of an incompressible inviscid fluid and the reductive perturbation technique, the propagation of weakly nonlinear waves in a fluid-filled thin elastic tube is investigated in the longwave approximation. The governing equation for this special case is obtained as the Korteweg-de-Vries equation. It is shown that, contrary to the result of previous works on the same subject, in the present work, even for Mooney-Rivlin material, it is possible to obtain the nonlinear Korteweg-de-Vries equation.


1998 ◽  
Vol 167 ◽  
pp. 151-154
Author(s):  
Y.D. Zhugzhda ◽  
V.M. Nakariakov

AbstractKorteweg-de Vries equations for slow body and torsional weakly nonlinear Alfvén waves in twisted magnetic flux tubes are derived. Slow body solitons appear as a narrowing of the tube in a low β plasma and widening of the tube, when β ≫ 1. Alfvén torsional solitons appear as a widening (β > 1) and narrowing (β < 1) of the tube, where there is a local increase of tube twisting. Two scenarios of nonlinear dissipation of strongly nonlinear waves in twisted flux tubes are proposed.


2002 ◽  
Vol 470 ◽  
pp. 359-382 ◽  
Author(s):  
PAUL DURU ◽  
ÉLISABETH GUAZZELLI

The objective of the present work is to investigate experimentally the secondary instability of the one-dimensional voidage waves occurring in two-dimensional liquid- fluidized beds and to examine the physical origin of bubbles, i.e. regions devoid of particles, which arise in fluidization. In the case of moderate-density glass particles, we observe the formation of transient buoyant blobs clearly resulting from the destabilization of the one-dimensional wavy structure. With metallic beads of the same size but larger density, the same destabilization occurs but it leads to the formation of real bubbles. Comparison with previous analytical and numerical studies is attempted. Whereas the linear and weakly nonlinear analytical models are not appropriate, the direct nonlinear simulations provide a qualitative agreement with the observed destabilization mechanism.


Author(s):  
Yurii I. Shokin ◽  
Alexander D. Rychkov ◽  
Gayaz S. Khakimzyanov ◽  
Leonid B. Chubarov

AbstractIn the present paper we study features and abilities of the combined TVD+SPH method relative to problems of numerical simulation of long waves runup on a shore within the shallow water theory. The results obtained by this method are compared to analytic solutions and to the data of laboratory experiments. Examples of successful application of the TVD+SPH method are presented for the case of study of runup processes for weakly nonlinear and strongly nonlinear waves, and also for


Sign in / Sign up

Export Citation Format

Share Document