On the nonlinear evolution of a pair of oblique Tollmien–Schlichting waves in boundary layers

1997 ◽  
Vol 340 ◽  
pp. 361-394 ◽  
Author(s):  
XUESONG WU ◽  
S. J. LEIB ◽  
M. E. GOLDSTEIN

This paper is concerned with the nonlinear interaction and development of a pair of oblique Tollmien–Schlichting waves which travel with equal but opposite angles to the free stream in a boundary layer. Our approach is based on high-Reynolds-number asymptotic methods. The so-called ‘upper-branch’ scaling is adopted so that there exists a well-defined critical layer, i.e. a thin region surrounding the level at which the basic flow velocity equals the phase velocity of the waves. We show that following the initial linear growth, the disturbance evolves through several distinct nonlinear stages. In the first of these, nonlinearity only affects the phase angle of the amplitude of the disturbance, causing rapid wavelength shortening, while the modulus of the amplitude still grows exponentially as in the linear regime. The second stage starts when the wavelength shortening produces a back reaction on the development of the modulus. The phase angle and the modulus then evolve on different spatial scales, and are governed by two coupled nonlinear equations. The solution to these equations develops a singularity at a finite distance downstream. As a result, the disturbance enters the third stage in which it evolves over a faster spatial scale, and the critical layer becomes both non-equilibrium and viscous in nature, in contrast to the two previous stages, where the critical layer is in equilibrium and purely viscosity dominated. In this stage, the development is governed by an amplitude equation with the same nonlinear term as that derived by Wu, Lee & Cowley (1993) for the interaction between a pair of Rayleigh waves. The solution develops a new singularity, leading to the fourth stage where the flow is governed by the fully nonlinear three-dimensional inviscid triple-deck equations. It is suggested that the stages of evolution revealed here may characterize the so-called ‘oblique breakdown’ in a boundary layer. A discussion of the extension of the analysis to include the resonant-triad interaction is given.

2007 ◽  
Vol 590 ◽  
pp. 265-294 ◽  
Author(s):  
XUESONG WU ◽  
P. A. STEWART ◽  
S. J. COWLEY

This paper is concerned with the nonlinear interaction between a planar and a pair of oblique Tollmien–Schlichting (T-S) waves which are phase-locked in that they travel with (nearly) the same phase speed. The evolution of such a disturbance is described using a high-Reynolds-number asymptotic approach in the so-called ‘upper--branch’ scaling regime. It follows that there exists a well-defined common critical layer (i.e. a thin region surrounding the level at which the basic flow velocity equals the phase speed of the waves to leading order) and the dominant interactions take place there. The disturbance is shown to evolve through several distinctive stages. In the first of these, the critical layer is in equilibrium and viscosity dominated. If a small mismatching exists in the phase speeds, the interaction between the planar and oblique waves leads directly to super-exponential growth/decay of the oblique modes. However, if the modes are perfectly phase-locked, the interaction in the first instance affects only the phase of the amplitude function of the oblique modes (so causing rapid wavelength shortening), while the modulus of the amplitude still evolves exponentially until the wavelength shortening produces a back reaction on the modulus (which then induces a super-exponential growth). Whether or not there is a small mismatch or a perfect match in the phase speeds, once the growth rate of the oblique modes becomes sufficiently large, the disturbance enters a second stage, in which the critical layer becomes both non-equilibrium and viscous in nature. The oblique modes continue to experience super-exponential growth, albeit of a different form from that in the previous stages, until the self-interaction between them, as well as their back effect on the planar mode, becomes important. At that point, the disturbance enters a third, fully interactive stage, during which the development of the disturbance is governed by the amplitude equations with the same nonlinear terms as previously derived for the phase-locked interaction of Rayleigh instability waves. The solution develops a singularity, leading to the final stage where the flow is governed by fully nonlinear three-dimensional inviscid triple-deck equations. The present work indicates that seeding a planar T-S wave can enhance the amplification of all oblique modes which share approximately its phase speed.


1996 ◽  
Vol 323 ◽  
pp. 133-171 ◽  
Author(s):  
Xuesong Wu ◽  
Philip A. Stewart ◽  
Stephen J. Cowley

The nonlinear development of a weakly modulated Tollmien-Schlichting wavetrain in a boundary layer is studied theoretically using high-Reynolds-number asymptotic methods. The ‘carrier’ wave is taken to be two-dimensional, and the envelope is assumed to be a slowly varying function of time and of the streamwise and spanwise variables. Attention is focused on the scalings appropriate to the so-called ‘upper branch’ and ‘high-frequency lower branch’. The dominant nonlinear effects are found to arise in the critical layer and the surrounding ‘diffusion layer’: nonlinear interactions in these regions can influence the development of the wavetrain by producing a spanwise-dependent mean-flow distortion. The amplitude evolution is governed by an integro-partial-differential equation, whose nonlinear term is history-dependent and involves the highest derivative with respect to the spanwise variable. Numerical solutions show that a localized singularity can develop at a finite distance downstream. This singularity seems consistent with the experimentally observed focusing of vorticity at certain spanwise locations, although quantitative comparisons have not been attempted.


2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Georgia S. Brennan ◽  
Jitesh S. B. Gajjar ◽  
Richard E. Hewitt

AbstractTwo-dimensional boundary layer flows in quiet disturbance environments are known to become unstable to Tollmien–Schlichting waves. The experimental work of Liepmann et al. (J Fluid Mech 118:187–200, 1982), Liepmann and Nosenchuck (J Fluid Mech 118:201–204, 1982) showed how it is possible to control and reduce unstable Tollmien–Schlichting wave amplitudes using unsteady surface heating. We consider the problem of an oncoming planar compressible subsonic boundary layer flow with a three-dimensional vibrator mounted on a flat plate, and with surface heating present. It is shown using asymptotic methods based on triple-deck theory that it is possible to choose an unsteady surface heating distribution to cancel out the response due to the vibrator. An approximation based on the exact formula is used successfully in numerical computations to confirm the findings. The results presented here are a generalisation of the analogous results for the two-dimensional problem in Brennan et al. (J Fluid Mech 909:A16-1, 2020).


2001 ◽  
Vol 432 ◽  
pp. 69-90 ◽  
Author(s):  
RUDOLPH A. KING ◽  
KENNETH S. BREUER

An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional and oblique (three-dimensional) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well-defined wavenumber spectrum with fundamental wavenumber kw. A planar downstream-travelling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to kts = kw. The range of acoustic forcing levels, ε, and roughness heights, Δh, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination εΔh resulted in subsequent nonlinear development of the Tollmien–Schlichting (T–S) wave. This study provides the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the two-dimensional and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber αw and measuring the T–S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.


1989 ◽  
Vol 199 ◽  
pp. 403-440 ◽  
Author(s):  
E. Laurien ◽  
L. Kleiser

The laminar-turbulent transition process in a parallel boundary-layer with Blasius profile is simulated by numerical integration of the three-dimensional incompressible Navier-Stokes equations using a spectral method. The model of spatially periodic disturbances developing in time is used. Both the classical Klebanoff-type and the subharmonic type of transition are simulated. Maps of the three-dimensional velocity and vorticity fields and visualizations by integrated fluid markers are obtained. The numerical results are compared with experimental measurements and flow visualizations by other authors. Good qualitative and quantitative agreement is found at corresponding stages of development up to the one-spike stage. After the appearance of two-dimensional Tollmien-Schlichting waves of sufficiently large amplitude an increasing three-dimensionality is observed. In particular, a peak-valley structure of the velocity fluctuations, mean longitudinal vortices and sharp spike-like instantaneous velocity signals are formed. The flow field is dominated by a three-dimensional horseshoe vortex system connected with free high-shear layers. Visualizations by time-lines show the formation of A-structures. Our numerical results connect various observations obtained with different experimental techniques. The initial three-dimensional steps of the transition process are consistent with the linear theory of secondary instability. In the later stages nonlinear interactions of the disturbance modes and the production of higher harmonics are essential.We also study the control of transition by local two-dimensional suction and blowing at the wall. It is shown that transition can be delayed or accelerated by superposing disturbances which are out of phase or in phase with oncoming Tollmien-Schlichting instability waves, respectively. Control is only effective if applied at an early, two-dimensional stage of transition. Mean longitudinal vortices remain even after successful control of the fluctuations.


1997 ◽  
Vol 353 ◽  
pp. 163-195 ◽  
Author(s):  
S. N. TIMOSHIN

A high-Reynolds-number asymptotic theory is developed for linear instability waves in a two-dimensional incompressible boundary layer on a flat surface coated with a thin film of a different fluid. The focus in this study is on the influence of the film flow on the lower-branch Tollmien–Schlichting waves, and also on the effect of boundary-layer/potential flow interaction on interfacial instabilities. Accordingly, the film thickness is assumed to be comparable to the thickness of a viscous sublayer in a three-tier asymptotic structure of lower-branch Tollmien–Schlichting disturbances. A fully nonlinear viscous/inviscid interaction formulation is derived, and computational and analytical solutions for small disturbances are obtained for both Tollmien–Schlichting and interfacial instabilities for a range of density and viscosity ratios of the fluids, and for various values of the surface tension coefficient and the Froude number. It is shown that the interfacial instability contains the fastest growing modes and an upper-branch neutral point within the chosen flow regime if the film viscosity is greater than the viscosity of the ambient fluid. For a less viscous film the theory predicts a lower neutral branch of shorter-scale interfacial waves. The film flow is found to have a strong effect on the Tollmien–Schlichting instability, the most dramatic outcome being a powerful destabilization of the flow due to a linear resonance between growing Tollmien–Schlichting and decaying capillary modes. Increased film viscosity also destabilizes Tollmien–Schlichting disturbances, with the maximum growth rate shifted towards shorter waves. Qualitative and quantitative comparisons are made with experimental observations by Ludwieg & Hornung (1989).


1992 ◽  
Vol 242 ◽  
pp. 701-720 ◽  
Author(s):  
M. Tadjfar ◽  
R. J. Bodonyi

Receptivity of a laminar boundary layer to the interaction of time-harmonic free-stream disturbances with a three-dimensional roughness element is studied. The three-dimensional nonlinear triple–deck equations are solved numerically to provide the basic steady-state motion. At high Reynolds numbers, the governing equations for the unsteady motion are the unsteady linearized three-dimensional triple-deck equations. These equations can only be solved numerically. In the absence of any roughness element, the free-stream disturbances, to the first order, produce the classical Stokes flow, in the thin Stokes layer near the wall (on the order of our lower deck). However, with the introduction of a small three-dimensional roughness element, the interaction between the hump and the Stokes flow introduces a spectrum of all spatial disturbances inside the boundary layer. For supercritical values of the scaled Strouhal number, S0 > 2, these Tollmien–Schlichting waves are amplified in a wedge-shaped region, 15° to 18° to the basic-flow direction, extending downstream of the hump. The amplification rate approaches a value slightly higher than that of two-dimensional Tollmien–Schlichting waves, as calculated by the linearized analysis, far downstream of the roughness element.


2019 ◽  
Vol 31 (11) ◽  
pp. 114104
Author(s):  
V. I. Borodulin ◽  
A. V. Ivanov ◽  
Y. S. Kachanov ◽  
D. A. Mischenko ◽  
R. Örlü ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document