scholarly journals Experimental and theoretical study of swept-wing boundary-layer instabilities. Three-dimensional Tollmien-Schlichting instability

2019 ◽  
Vol 31 (11) ◽  
pp. 114104
Author(s):  
V. I. Borodulin ◽  
A. V. Ivanov ◽  
Y. S. Kachanov ◽  
D. A. Mischenko ◽  
R. Örlü ◽  
...  
2001 ◽  
Vol 432 ◽  
pp. 69-90 ◽  
Author(s):  
RUDOLPH A. KING ◽  
KENNETH S. BREUER

An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional and oblique (three-dimensional) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well-defined wavenumber spectrum with fundamental wavenumber kw. A planar downstream-travelling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to kts = kw. The range of acoustic forcing levels, ε, and roughness heights, Δh, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination εΔh resulted in subsequent nonlinear development of the Tollmien–Schlichting (T–S) wave. This study provides the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the two-dimensional and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber αw and measuring the T–S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.


2008 ◽  
Vol 3 (3) ◽  
pp. 34-38
Author(s):  
Sergey A. Gaponov ◽  
Yuri G. Yermolaev ◽  
Aleksandr D. Kosinov ◽  
Nikolay V. Semionov ◽  
Boris V. Smorodsky

Theoretical and an experimental research results of the disturbances development in a swept wing boundary layer are presented at Mach number М = 2. In experiments development of natural and small amplitude controllable disturbances downstream was studied. Experiments were carried out on a swept wing model with a lenticular profile at a zero attack angle. The swept angle of a leading edge was 40°. Wave parameters of moving disturbances were determined. In frames of the linear theory and an approach of the local self-similar mean flow the stability of a compressible three-dimensional boundary layer is studied. Good agreement of the theory with experimental results for transversal scales of unstable vertices of the secondary flow was obtained. However the calculated amplification rates differ from measured values considerably. This disagreement is explained by the nonlinear processes observed in experiment


1989 ◽  
Vol 199 ◽  
pp. 403-440 ◽  
Author(s):  
E. Laurien ◽  
L. Kleiser

The laminar-turbulent transition process in a parallel boundary-layer with Blasius profile is simulated by numerical integration of the three-dimensional incompressible Navier-Stokes equations using a spectral method. The model of spatially periodic disturbances developing in time is used. Both the classical Klebanoff-type and the subharmonic type of transition are simulated. Maps of the three-dimensional velocity and vorticity fields and visualizations by integrated fluid markers are obtained. The numerical results are compared with experimental measurements and flow visualizations by other authors. Good qualitative and quantitative agreement is found at corresponding stages of development up to the one-spike stage. After the appearance of two-dimensional Tollmien-Schlichting waves of sufficiently large amplitude an increasing three-dimensionality is observed. In particular, a peak-valley structure of the velocity fluctuations, mean longitudinal vortices and sharp spike-like instantaneous velocity signals are formed. The flow field is dominated by a three-dimensional horseshoe vortex system connected with free high-shear layers. Visualizations by time-lines show the formation of A-structures. Our numerical results connect various observations obtained with different experimental techniques. The initial three-dimensional steps of the transition process are consistent with the linear theory of secondary instability. In the later stages nonlinear interactions of the disturbance modes and the production of higher harmonics are essential.We also study the control of transition by local two-dimensional suction and blowing at the wall. It is shown that transition can be delayed or accelerated by superposing disturbances which are out of phase or in phase with oncoming Tollmien-Schlichting instability waves, respectively. Control is only effective if applied at an early, two-dimensional stage of transition. Mean longitudinal vortices remain even after successful control of the fluctuations.


1992 ◽  
Vol 242 ◽  
pp. 701-720 ◽  
Author(s):  
M. Tadjfar ◽  
R. J. Bodonyi

Receptivity of a laminar boundary layer to the interaction of time-harmonic free-stream disturbances with a three-dimensional roughness element is studied. The three-dimensional nonlinear triple–deck equations are solved numerically to provide the basic steady-state motion. At high Reynolds numbers, the governing equations for the unsteady motion are the unsteady linearized three-dimensional triple-deck equations. These equations can only be solved numerically. In the absence of any roughness element, the free-stream disturbances, to the first order, produce the classical Stokes flow, in the thin Stokes layer near the wall (on the order of our lower deck). However, with the introduction of a small three-dimensional roughness element, the interaction between the hump and the Stokes flow introduces a spectrum of all spatial disturbances inside the boundary layer. For supercritical values of the scaled Strouhal number, S0 > 2, these Tollmien–Schlichting waves are amplified in a wedge-shaped region, 15° to 18° to the basic-flow direction, extending downstream of the hump. The amplification rate approaches a value slightly higher than that of two-dimensional Tollmien–Schlichting waves, as calculated by the linearized analysis, far downstream of the roughness element.


Author(s):  
Alexander Kosinov ◽  
Nikolai Semionov ◽  
Yury Yermolaev ◽  
Boris Smorodsky ◽  
Gleb Kolosov ◽  
...  

The paper is devoted to an experimental and theoretical study of effect of moderate angle-of-attack variation on disturbances evolution and laminar-turbulent transition in a supersonic boundary layer on swept wing at Mach 2. Monotonous growth of the transition Reynolds numbers with angle of attack increasing from −2° to 2.7° is confirmed. For the same conditions, calculations based on linear stability theory are performed. The experimental and computational results show a favourable comparison.


2019 ◽  
Author(s):  
V. I. Borodulin ◽  
A. V. Ivanov ◽  
Y. S. Kachanov ◽  
D. A. Mischenko ◽  
R. Örlü ◽  
...  

Author(s):  
Stepan Tolkachev ◽  
Victor Kozlov ◽  
Valeriya Kaprilevskaya

In this article, the results of research about stationary and secondary disturbances development behind the localized and two-dimensional roughness elements are presented. It is shown that the two-dimensional roughness element has a destabilizing effect on the disturbances induced by the three-dimensional roughness element lying upstream. In this case, the two-dimensional roughness element causes the appearance of stationary structures, and then secondary perturbations, whose frequency range lies lower than in the case of the stationary vortices excited by a three-dimensional roughness element.


2001 ◽  
Vol 426 ◽  
pp. 73-94 ◽  
Author(s):  
A. A. MASLOV ◽  
A. N. SHIPLYUK ◽  
A. A. SIDORENKO ◽  
D. ARNAL

Experimental investigations of the boundary layer receptivity, on the sharp leading edge of a at plate, to acoustic waves induced by two-dimensional and three- dimensional perturbers, have been performed for a free-stream Mach number M∞ = 5.92. The fields of controlled free-stream disturbances were studied. It was shown that two-dimensional and three-dimensional perturbers radiate acoustic waves and that these perturbers present a set of harmonic motionless sources and moving sources with constant amplitude. The disturbances excited in the boundary layer were measured. It was found that acoustic waves impinging on the leading edge generate Tollmien–Schlichting waves in the boundary layer. The receptivity coefficients were obtained for several radiation conditions and intensities. It was shown that there is a dependence of receptivity coefficients on the wave inclination angles.


1992 ◽  
Vol 238 ◽  
pp. 537-577 ◽  
Author(s):  
K. S. Yeo

This paper examines the linear stability of the Blasius boundary layer over compliant walls to three-dimensional (oblique) disturbance wave modes. The formulation of the eigenvalue problem is applicable to compliant walls possessing general material anisotropy. Isotropic-material walls and selected classes of anisotropic-material walls are studied. When the properties of the wall are identical with respect to all oblique wave directions, the stability eigenvalue problem for unstable three-dimensional wave modes may be reduced to an equivalent problem for two-dimensional modes. The results for isotropic-material walls show that three-dimensional Tollmien–Schlichting instability modes are more dominant than their two-dimensional counterparts when the walls are sufficiently compliant. The critical Reynolds number for Tollmien-Schlichting instability may be given by three-dimensional modes. Furthermore, for highly compliant walls, calculations based solely on two-dimensional modes are likely to underestimate the maximum disturbance growth factor needed for transition prediction and correlation. However, because the disturbance growth rates on highly compliant walls are much lower than those on a rigid wall, significant delay of transition may still be possible provided compliance-induced instabilities are properly suppressed. Walls featuring material anisotropy which have reduced stiffness to shear deformation in the transverse and oblique planes are also investigated. Such anisotropy is found to be effective in reducing the growth rates of the three-dimensional modes relative to those of the two-dimensional modes.


Sign in / Sign up

Export Citation Format

Share Document