scholarly journals Sound transmission in slowly varying circular and annular lined ducts with flow

1999 ◽  
Vol 380 ◽  
pp. 279-296 ◽  
Author(s):  
S. W. RIENSTRA

Sound transmission through straight circular ducts with a uniform inviscid mean flow and a constant acoustic lining (impedance wall) is classically described by a modal expansion. A natural extension for ducts with axially slowly varying properties (diameter and mean flow, wall impedance) is a multiple-scales solution. It is shown in the present paper that a consistent approximation of boundary condition and isentropic mean flow allows the multiple-scales problem to have an exact solution. Since the calculational complexities are no greater than for the classical straight duct model, the present solution provides an attractive alternative to a full numerical solution if diameter variation is relevant. A unique feature of the present solution is that it provides a systematic approximation to the hollow-to-annular cylinder transition problem in the turbofan engine inlet duct.

2001 ◽  
Vol 445 ◽  
pp. 207-234 ◽  
Author(s):  
A. J. COOPER ◽  
N. PEAKE

The propagation of unsteady disturbances in a slowly varying cylindrical duct carrying mean swirling flow is described. A consistent multiple-scales solution for the mean flow and disturbance is derived, and the effect of finite-impedance boundaries on the propagation of disturbances in mean swirling flow is also addressed.Two degrees of mean swirl are considered: first the case when the swirl velocity is of the same order as the axial velocity, which is applicable to turbomachinery flow behind a rotor stage; secondly a small swirl approximation, where the swirl velocity is of the same order as the axial slope of the duct walls, which is relevant to the flow downstream of the stator in a turbofan engine duct.The presence of mean vorticity couples the acoustic and vorticity equations and the associated eigenvalue problem is not self-adjoint as it is for irrotational mean flow. In order to obtain a secularity condition, which determines the amplitude variation along the duct, an adjoint solution for the coupled system of equations is derived. The solution breaks down at a turning point where a mode changes from cut on to cut off. Analysis in this region shows that the amplitude here is governed by a form of Airy's equation, and that the effect of swirl is to introduce a small shift in the location of the turning point. The reflection coefficient at this corrected turning point is shown to be exp (iπ/2).The evolution of axial wavenumbers and cross-sectionally averaged amplitudes along the duct are calculated and comparisons made between the cases of zero mean swirl, small mean swirl and O(1) mean swirl. In a hard-walled duct it is found that small mean swirl only affects the phase of the amplitude, but O(1) mean swirl produces a much larger amplitude variation along the duct compared with a non-swirling mean flow. In a duct with finite-impedance walls, mean swirl has a large damping effect when the modes are co-rotating with the swirl. If the modes are counter-rotating then an upstream-propagating mode can be amplified compared to the no-swirl case, but a downstream-propagating mode remains more damped.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Zhongchang Qian ◽  
Daoqing Chang ◽  
Bilong Liu ◽  
Ke Liu

An approach on the prediction of sound transmission loss for a finite sandwich panel with honeycomb core is described in the paper. The sandwich panel is treated as orthotropic and the apparent bending stiffness in two principal directions is estimated by means of simple tests on beam elements cut from the sandwich panel. Utilizing orthotropic panel theory, together with the obtained bending stiffness in two directions, the sound transmission loss of simply-supported sandwich panel is predicted by the modal expansion method. Simulation results indicated that dimension, orthotropy, and loss factor may play important roles on sound transmission loss of sandwich panel. The predicted transmission loss is compared with measured data and the agreement is reasonable. This approach may provide an efficient tool to predict the sound transmission loss of finite sandwich panels.


Author(s):  
Huixuan Wu ◽  
Rinaldo L. Miorini ◽  
Joseph Katz

A series of high resolution planar particle image velocimetry measurements performed in a waterjet pump rotor reveal the inner structure of the tip leakage vortex (TLV) which dominates the entire flow field in the tip region. Turbulence generated by interactions among the TLV, the shear layer that develops as the backward leakage flow emerges from the tip clearance as a “wall jet”, the passage flow, and the endwall is highly inhomogeneous and anisotropic. We examine this turbulence in both RANS and LES modelling contexts. Spatially non-uniform distributions of Reynolds stress components are explained in terms of the local mean strain field and associated turbulence production. Characteristic length scales are also inferred from spectral analysis. Spatial filtering of instantaneous data enables the calculation of subgrid scale (SGS) stresses, along with the SGS energy flux (dissipation). The data show that the SGS energy flux differs from the turbulence production rate both in trends and magnitude. The latter is dominated by energy flux from the mean flow to the large scale turbulence, which is resolved in LES, whereas the former is dominated by energy flux from the mean flow to the SGS turbulence. The SGS dissipation rate is also used for calculating the static and dynamic Smagorinsky coefficients, the latter involving filtering at multiple scales; both vary substantially in the tip region, and neither is equal to values obtained in isotropic turbulence.


AIAA Journal ◽  
2012 ◽  
Vol 50 (10) ◽  
pp. 2268-2276 ◽  
Author(s):  
H. Meng ◽  
F. X. Xin ◽  
T. J. Lu

2018 ◽  
Author(s):  
Jane W. Liang ◽  
Robert J. Nichols ◽  
Śaunak Sen

AbstractWe develop a flexible and computationally efficient approach for analysing high throughput chemical genetic screens. In such screens, a library of genetic mutants is phenotyped in a large number of stresses. The goal is to detect interactions between genes and stresses. Typically, this is achieved by grouping the mutants and stresses into categories, and performing modified t-tests for each combination. This approach does not have a natural extension if mutants or stresses have quantitative or non-overlapping annotations (eg. if conditions have doses, or a mutant falls into more than one category simultaneously). We develop a matrix linear model framework that allows us to model relationships between mutants and conditions in a simple, yet flexible multivariate framework. It encodes both categorical and continuous relationships to enhance detection of associations. To handle large datasets, we develop a fast estimation approach that takes advantage of the structure of matrix linear models. We evaluate our method’s performance in simulations and in an E. coli chemical genetic screen, comparing it with an existing univariate approach based on modified t-tests. We show that matrix linear models perform slightly better than the univariate approach when mutants and conditions are classified in non-overlapping categories, and substantially better when conditions can be ordered in dosage categories. Our approach is much faster computationally and is scalable to larger datasets. It is an attractive alternative to current methods, and provides a natural framework extensible to larger, and more complex chemical genetic screens. A Julia implementation of matrix linear models and the code used for the analysis in this paper can be found at https://bitbucket.org/jwliang/mlm_packages and https://bitbucket.org/jwliang/mlm_gs_supplement, respectively.


Sign in / Sign up

Export Citation Format

Share Document