Simulation of boundary layer transition induced by periodically passing wakes

1999 ◽  
Vol 398 ◽  
pp. 109-153 ◽  
Author(s):  
XIAOHUA WU ◽  
ROBERT G. JACOBS ◽  
JULIAN C. R. HUNT ◽  
PAUL A. DURBIN

The interaction between an initially laminar boundary layer developing spatially on a flat plate and wakes traversing the inlet periodically has been simulated numerically. The three-dimensional, time-dependent Navier–Stokes equations were solved with 5.24×107 grid points using a message passing interface on a scalable parallel computer. The flow bears a close resemblance to the transitional boundary layer on turbomachinery blades and was designed following, in outline, the experiments by Liu & Rodi (1991). The momentum thickness Reynolds number evolves from Reθ = 80 to 1120. Mean and second-order statistics downstream of Reθ = 800 are of canonical flat-plate turbulent boundary layers and are in good agreement with Spalart (1988).In many important aspects the mechanism leading to the inception of turbulence is in agreement with previous fundamental studies on boundary layer bypass transition, as summarized in Alfredsson & Matsubara (1996). Inlet wake disturbances inside the boundary layer evolve rapidly into longitudinal puffs during an initial receptivity phase. In the absence of strong forcing from free-stream vortices, these structures exhibit streamwise elongation with gradual decay in amplitude. Selective intensification of the puffs occurs when certain types of turbulent eddies from the free-stream wake interact with the boundary layer flow through a localized instability. Breakdown of the puffs into young turbulent spots is preceded by a wavy motion in the velocity field in the outer part of the boundary layer.Properties and streamwise evolution of the turbulent spots following breakdown, as well as the process of completion of transition to turbulence, are in agreement with previous engineering turbomachinery flow studies. The overall geometrical characteristics of the matured turbulent spot are in good agreement with those observed in the experiments of Zhong et al. (1998). When breakdown occurs in the outer layer, where local convection speed is large, as in the present case, the spots broaden downstream, having the vague appearance of an arrowhead pointing upstream.The flow has also been studied statistically. Phase-averaged velocity fields and skin-friction coefficients in the transitional region show similar features to previous cascade experiments. Selected results from additional thought experiments and simulations are also presented to illustrate the effects of streamwise pressure gradient and free-stream turbulence.

Author(s):  
Heinz-Adolf Schreiber ◽  
Wolfgang Steinert ◽  
Bernhard Küsters

An experimental and analytical study has been performed on the effect of Reynolds number and free-stream turbulence on boundary layer transition location on the suction surface of a controlled diffusion airfoil (CDA). The experiments were conducted in a rectilinear cascade facility at Reynolds numbers between 0.7 and 3.0×106 and turbulence intensities from about 0.7 to 4%. An oil streak technique and liquid crystal coatings were used to visualize the boundary layer state. For small turbulence levels and all Reynolds numbers tested the accelerated front portion of the blade is laminar and transition occurs within a laminar separation bubble shortly after the maximum velocity near 35–40% of chord. For high turbulence levels (Tu > 3%) and high Reynolds numbers transition propagates upstream into the accelerated front portion of the CDA blade. For those conditions, the sensitivity to surface roughness increases considerably and at Tu = 4% bypass transition is observed near 7–10% of chord. Experimental results are compared to theoretical predictions using the transition model which is implemented in the MISES code of Youngren and Drela. Overall the results indicate that early bypass transition at high turbulence levels must alter the profile velocity distribution for compressor blades that are designed and optimized for high Reynolds numbers.


1997 ◽  
Vol 119 (3) ◽  
pp. 405-411 ◽  
Author(s):  
R. E. Mayle ◽  
A. Schulz

A theory is presented for calculating the fluctuations in a laminar boundary layer when the free stream is turbulent. The kinetic energy equation for these fluctuations is derived and a new mechanism is revealed for their production. A methodology is presented for solving the equation using standard boundary layer computer codes. Solutions of the equation show that the fluctuations grow at first almost linearly with distance and then more slowly as viscous dissipation becomes important. Comparisons of calculated growth rates and kinetic energy profiles with data show good agreement. In addition, a hypothesis is advanced for the effective forcing frequency and free-stream turbulence level that produce these fluctuations. Finally, a method to calculate the onset of transition is examined and the results compared to data.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Louis B. Wonnell ◽  
James Chen

A boundary layer with Re = 106 is simulated numerically on a flat plate using morphing continuum theory. This theory introduces new terms related to microproperties of the fluid. These terms are added to a finite-volume fluid solver with appropriate boundary conditions. The success of capturing the initial disturbances leading to turbulence is shown to be a byproduct of the physical and mathematical rigor underlying the balance laws and constitutive relations introduced by morphing continuum theory (MCT). Dimensionless equations are introduced to produce the parameters driving the formation of disturbances leading to turbulence. Numerical results for the flat plate are compared with the experimental results determined by the European Research Community on Flow, Turbulence, and Combustion (ERCOFTAC) database. Experimental data show good agreement inside the boundary layer and in the bulk flow. Success in predicting conditions necessary for turbulent and transitional (T2) flows without ad hoc closure models demonstrates the theory's inherent advantage over traditional turbulence models.


Author(s):  
R. E. Mayle ◽  
A. Schulz

A theory is presented for calculating the fluctuations in a laminar boundary layer when the free stream is turbulent. The kinetic energy equation for these fluctuations is derived and a new mechanism is revealed for their production. A methodology is presented for solving the equation using standard boundary layer computer codes. Solutions of the equation show that the fluctuations grow at first almost linearly with distance and then more slowly as viscous dissipation becomes important. Comparisons of calculated growth rates and kinetic energy profiles with data show good agreement. In addition, a hypothesis is advanced for the effective forcing frequency and free-stream turbulence level which produce these fluctuations. Finally, a method to calculate the onset of transition is examined and the results compared to data.


Author(s):  
Ashley D. Scillitoe ◽  
Paul G. Tucker ◽  
Paolo Adami

Large Eddy Simulation (LES) is used to explore the boundary layer transition mechanisms in two rectilinear compressor cascades. To reduce numerical dissipation, a novel locally adaptive smoothing scheme is added to an unstructured finite-volume solver. The performance of a number of Sub-Grid Scale (SGS) models is explored. With the first cascade, numerical results at two different freestream turbulence intensities (Ti’s), 3.25% and 10%, are compared. At both Ti’s, time-averaged skin-friction and pressure coefficient distributions agree well with previous Direct Numerical Simulations (DNS). At Ti = 3.25%, separation induced transition occurs on the suction surface, whilst it is bypassed on the pressure surface. The pressure surface transition is dominated by modes originating from the convection of Tollmien-Schlichting waves by Klebanoff streaks. However, they do not resembled a classical bypass transition. Instead, they display characteristics of the “overlap” and “inner” transition modes observed in the previous DNS. At Ti = 10%, classical bypass transition occurs, with Klebanoff streaks incepting turbulent spots. With the second cascade, the influence of unsteady wakes on transition is examined. Wake-amplified Klebanoff streaks were found to instigate turbulent spots, which periodically shorten the suction surface separation bubble. The celerity line corresponding to 70% of the free-stream velocity, which is associated with the convection speed of the amplified Klebanoff streaks, was found to be important.


2005 ◽  
Vol 128 (2) ◽  
pp. 247-257 ◽  
Author(s):  
Jonathan H. Watmuff

Experiments are described in which well-defined weak Free Stream Nonuniformity (FSN) is introduced by placing fine wires upstream of the leading edge of a flat plate. Large amplitude spanwise thickness variations form in the boundary layer as a result of the interaction between the steady laminar wakes from the wires and the leading edge. The centerline of a region of elevated layer thickness is aligned with the centerline of the wake in the freestream and the response is shown to be remarkably sensitive to the spanwise length-scale of the wakes. The region of elevated thickness is equivalent to a long narrow low speed streak in the layer. Elevated Free Stream Turbulence (FST) levels are known to produce randomly forming arrays of long narrow low speed streaks in laminar boundary layers. Therefore the characteristics of the streaks resulting from the FSN are studied in detail in an effort to gain some insight into bypass transition that occurs at elevated FST levels. The shape factors of the profiles in the vicinity of the streak appear to be unaltered from the Blasius value, even though the magnitude of the local thickness variations are as large as 60% of that of the undisturbed layer. Regions of elevated background unsteadiness appear on either side of the streak and it is shown that they are most likely the result of small amplitude spanwise modulation of the layer thickness. The background unsteadiness shares many of the characteristics of Klebanoff modes observed at elevated FST levels. However, the layer remains laminar to the end of the test section (Rx≈1.4×106) and there is no evidence of bursting or other phenomena associated with breakdown to turbulence. A vibrating ribbon apparatus is used to examine interactions between the streak and Tollmien-Schlichting (TS) waves. The deformation of the mean flow introduced by the streak is responsible for substantial phase and amplitude distortion of the waves and the breakdown of the distorted waves is more complex and it occurs at a lower Reynolds number than the breakdown of the K-type secondary instability that is observed when the FSN is not present.


2010 ◽  
Vol 665 ◽  
pp. 57-98 ◽  
Author(s):  
TAMER A. ZAKI ◽  
JAN G. WISSINK ◽  
WOLFGANG RODI ◽  
PAUL A. DURBIN

The flow through a compressor passage without and with incoming free-stream grid turbulence is simulated. At moderate Reynolds number, laminar-to-turbulence transition can take place on both sides of the aerofoil, but proceeds in distinctly different manners. The direct numerical simulations (DNS) of this flow reveal the mechanics of breakdown to turbulence on both surfaces of the blade. The pressure surface boundary layer undergoes laminar separation in the absence of free-stream disturbances. When exposed to free-stream forcing, the boundary layer remains attached due to transition to turbulence upstream of the laminar separation point. Three types of breakdowns are observed; they combine characteristics of natural and bypass transition. In particular, instability waves, which trace back to discrete modes of the base flow, can be observed, but their development is not independent of the Klebanoff distortions that are caused by free-stream turbulent forcing. At a higher turbulence intensity, the transition mechanism shifts to a purely bypass scenario. Unlike the pressure side, the suction surface boundary layer separates independent of the free-stream condition, be it laminar or a moderate free-stream turbulence of intensityTu~ 3%. Upstream of the separation, the amplification of the Klebanoff distortions is suppressed in the favourable pressure gradient (FPG) region. This suppression is in agreement with simulations of constant pressure gradient boundary layers. FPG is normally stabilizing with respect to bypass transition to turbulence, but is, thereby, unfavourable with respect to separation. Downstream of the FPG section, a strong adverse pressure gradient (APG) on the suction surface of the blade causes the laminar boundary layer to separate. The separation surface is modulated in the instantaneous fields of the Klebanoff distortion inside the shear layer, which consists of forward and backward jet-like perturbations. Separation is followed by breakdown to turbulence and reattachment. As the free-stream turbulence intensity is increased,Tu~ 6.5%, transitional turbulent patches are initiated, and interact with the downstream separated flow, causing local attachment. The calming effect, or delayed re-establishment of the boundary layer separation, is observed in the wake of the turbulent events.


Author(s):  
Masaharu Matsubara ◽  
P. Henrik Alfredsson ◽  
K. Johan A. Westin

Transition to turbulence in laminar boundary layers subjected to high levels of free stream turbulence (FST) can still not be reliably predicted, despite its technical importance, e.g. in the case of boundary layers developing on gas turbine blades. In a series of experiments in the MTL-wind tunnel at KTH the influence of grid-generated FST on boundary layer transition has been studied, with FST-levels up to 6%. It was shown from both flow visualisation and hot-wire measurements that the boundary layer develops unsteady streaky structures with high and low streamwise velocity. This leads to large amplitude low frequency fluctuations inside the boundary layer although the mean flow is still close to the laminar profile. Breakdown to turbulence occurs through an instability of the streaks which leads to the formation of turbulent spots. Accurate physical modelling of these processes seems to be needed in order to obtain a reliable prediction method.


2011 ◽  
Vol 682 ◽  
pp. 362-396 ◽  
Author(s):  
LARS-UVE SCHRADER ◽  
LUCA BRANDT ◽  
TAMER A. ZAKI

Receptivity, disturbance growth and breakdown to turbulence in Görtler flow are studied by spatial direct numerical simulation (DNS). The boundary layer is exposed to free-stream vortical modes and localized wall roughness. We propose a normalization of the roughness-induced receptivity coefficient by the square root of the Görtler number. This scaling removes the dependence of the receptivity coefficient on wall curvature. It is found that vortical modes are more efficient at generating Görtler vortices than localized roughness. The boundary layer is most receptive to zero- and low-frequency free-stream vortices, exciting steady and slowly travelling Görtler modes. The associated receptivity mechanism is linear and involves the generation of boundary-layer streaks, which soon evolve into unstable Görtler vortices. This connection between transient and exponential amplification is absent on flat plates and promotes transition to turbulence on curved walls. We demonstrate that the Görtler boundary layer is also receptive to high-frequency free-stream vorticity, which triggers steady Görtler rolls via a nonlinear receptivity mechanism. In addition to the receptivity study, we have carried out DNS of boundary-layer transition due to broadband free-stream turbulence with different intensities and frequency spectra. It is found that nonlinear receptivity dominates over the linear mechanism unless the free-stream fluctuations are concentrated in the low-frequency range. In the latter case, transition is accelerated due to the presence of travelling Görtler modes.


Author(s):  
M. E. Goldstein

This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number R λ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εR λ and the plate thickness and are held fixed (at O (1) and O (λ), respectively) in the limit as and ε →0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance.


Sign in / Sign up

Export Citation Format

Share Document