A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop

2000 ◽  
Vol 411 ◽  
pp. 325-350 ◽  
Author(s):  
SAEED MORTAZAVI ◽  
GRÉTAR TRYGGVASON

The cross-stream migration of a deformable drop in two-dimensional Hagen–Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (< 1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For viscosity ratio 0.125 a drop moves toward the centre of the channel, while for ratio 1.0 it moves away from the centre until halted by wall repulsion. The rate of migration increases with the deformability of the drop. At higher Reynolds numbers (5–50), the drop either moves to an equilibrium lateral position about halfway between the centreline and the wall – according to the so-called Segre–Silberberg effect or it undergoes oscillatory motion. The steady-state position depends only weakly on the various physical parameters of the flow, but the length of the transient oscillations increases as the Reynolds number is raised, or the density of the drop is increased, or the viscosity of the drop is decreased. Once the Reynolds number is high enough, the oscillations appear to persist forever and no steady state is observed. The numerical results are in good agreement with experimental observations, especially for drops that reach a steady-state lateral position. Most of the simulations assume that the flow is two-dimensional. A few simulations of three-dimensional flows for a modest Reynolds number (Re = 10), and a small computational domain, confirm the behaviour seen in two dimensions. The equilibrium position of the three-dimensional drop is close to that predicted in the simulations of two-dimensional flow.

Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


2011 ◽  
Vol 681 ◽  
pp. 411-433 ◽  
Author(s):  
HEMANT K. CHAURASIA ◽  
MARK C. THOMPSON

A detailed numerical study of the separating and reattaching flow over a square leading-edge plate is presented, examining the instability modes governing transition from two- to three-dimensional flow. Under the influence of background noise, experiments show that the transition scenario typically is incompletely described by either global stability analysis or the transient growth of dominant optimal perturbation modes. Instead two-dimensional transition effectively can be triggered by the convective Kelvin–Helmholtz (KH) shear-layer instability; although it may be possible that this could be described alternatively in terms of higher-order optimal perturbation modes. At least in some experiments, observed transition occurs by either: (i) KH vortices shedding downstream directly and then almost immediately undergoing three-dimensional transition or (ii) at higher Reynolds numbers, larger vortical structures are shed that are also three-dimensionally unstable. These two paths lead to distinctly different three-dimensional arrangements of vortical flow structures. This paper focuses on the mechanisms underlying these three-dimensional transitions. Floquet analysis of weakly periodically forced flow, mimicking the observed two-dimensional quasi-periodic base flow, indicates that the two-dimensional vortex rollers shed from the recirculation region become globally three-dimensionally unstable at a Reynolds number of approximately 380. This transition Reynolds number and the predicted wavelength and flow symmetries match well with those of the experiments. The instability appears to be elliptical in nature with the perturbation field mainly restricted to the cores of the shed rollers and showing the spatial vorticity distribution expected for that instability type. Indeed an estimate of the theoretical predicted wavelength is also a good match to the prediction from Floquet analysis and theoretical estimates indicate the growth rate is positive. Fully three-dimensional simulations are also undertaken to explore the nonlinear development of the three-dimensional instability. These show the development of the characteristic upright hairpins observed in the experimental dye visualisations. The three-dimensional instability that manifests at lower Reynolds numbers is shown to be consistent with an elliptic instability of the KH shear-layer vortices in both symmetry and spanwise wavelength.


1992 ◽  
Vol 238 ◽  
pp. 1-30 ◽  
Author(s):  
George Em Karniadakis ◽  
George S. Triantafyllou

The wakes of bluff objects and in particular of circular cylinders are known to undergo a ‘fast’ transition, from a laminar two-dimensional state at Reynolds number 200 to a turbulent state at Reynolds number 400. The process has been documented in several experimental investigations, but the underlying physical mechanisms have remained largely unknown so far. In this paper, the transition process is investigated numerically, through direct simulation of the Navier—Stokes equations at representative Reynolds numbers, up to 500. A high-order time-accurate, mixed spectral/spectral element technique is used. It is shown that the wake first becomes three-dimensional, as a result of a secondary instability of the two-dimensional vortex street. This secondary instability appears at a Reynolds number close to 200. For slightly supercritical Reynolds numbers, a harmonic state develops, in which the flow oscillates at its fundamental frequency (Strouhal number) around a spanwise modulated time-average flow. In the near wake the modulation wavelength of the time-average flow is half of the spanwise wavelength of the perturbation flow, consistently with linear instability theory. The vortex filaments have a spanwise wavy shape in the near wake, and form rib-like structures further downstream. At higher Reynolds numbers the three-dimensional flow oscillation undergoes a period-doubling bifurcation, in which the flow alternates between two different states. Phase-space analysis of the flow shows that the basic limit cycle has branched into two connected limit cycles. In physical space the period doubling appears as the shedding of two distinct types of vortex filaments.Further increases of the Reynolds number result in a cascade of period-doubling bifurcations, which create a chaotic state in the flow at a Reynolds number of about 500. The flow is characterized by broadband power spectra, and the appearance of intermittent phenomena. It is concluded that the wake undergoes transition to turbulence following the period-doubling route.


2010 ◽  
Vol 648 ◽  
pp. 225-256 ◽  
Author(s):  
B. E. STEWART ◽  
M. C. THOMPSON ◽  
T. LEWEKE ◽  
K. HOURIGAN

A study investigating the flow around a cylinder rolling or sliding on a wall has been undertaken in two and three dimensions. The cylinder motion is specified from a set of five discrete rotation rates, ranging from prograde through to retrograde rolling. A Reynolds number range of 20–500 is considered. The effects of the nearby wall and the imposed body motion on the wake structure and dominant wake transitions have been determined. Prograde rolling is shown to destabilize the wake flow, while retrograde rotation delays the onset of unsteady flow to Reynolds numbers well above those observed for a cylinder in an unbounded flow.Two-dimensional simulations show the presence of two recirculation zones in the steady wake, the lengths of which increase approximately linearly with the Reynolds number. Values of the lift and drag coefficient are also reported for the steady flow regime. Results from a linear stability analysis show that the wake initially undergoes a regular bifurcation from a steady two-dimensional flow to a steady three-dimensional wake for all rotation rates. The critical Reynolds number Rec of transition and the spanwise wavelength of the dominant mode are shown to be highly dependent on, but smoothly varying with, the rotation rate of the cylinder. Varying the rotation from prograde to retrograde rolling acts to increase the value of Rec and decrease the preferred wavelength. The structure of the fully evolved wake mode is then established through three-dimensional simulations. In fact it is found that at Reynolds numbers only marginally (~5%) above critical, the three-dimensional simulations indicate that the saturated state becomes time dependent, although at least initially, this does not result in a significant change to the mode structure. It is only at higher Reynolds numbers that the wake undergoes a transition to vortex shedding.An analysis of the three-dimensional transition indicates that it is unlikely to be due to a centrifugal instability despite the superficial similarity to the flow over a backward-facing step, for which the transition mechanism has been speculated to be centrifugal. However, the attached elongated recirculation region and distribution of the spanwise perturbation vorticity field, and the similarity of these features with those of the flow through a partially blocked channel, suggest the possibility that the mechanism is elliptic in nature. Some analysis which supports this conjecture is undertaken.


2004 ◽  
Vol 126 (3) ◽  
pp. 362-374 ◽  
Author(s):  
G. Biswas ◽  
M. Breuer ◽  
F. Durst

This paper is concerned with the behavior of flows over a backward-facing step geometry for various expansion ratios H/h=1.9423, 2.5 and 3.0. A literature survey was carried out and it was found that the flow shows a strong two-dimensional behavior, on the plane of symmetry, for Reynolds numbers ReD=ρUbD/μ below approximately 400 (Ub=bulk velocity and D=hydraulic diameter). In this Reynolds number range, two-dimensional predictions were carried out to provide information on the general integral properties of backward-facing step flows, on mean velocity distributions and streamlines. Information on characteristic flow patterns is provided for a wide Reynolds number range, 10−4⩽ReD⩽800. In the limiting case of ReD→0, a sequence of Moffatt eddies of decreasing size and intensity is verified to exist in the concave corner also at ReD=1. The irreversible pressure losses are determined for various Reynolds numbers as a function of the expansion ratio. The two-dimensional simulations are known to underpredict the primary reattachment length for Reynolds numbers beyond which the actual flow is observed to be three-dimensional. The spatial evolution of jet-like flows in both the streamwise and the spanwise direction and transition to three-dimensionality were studied at a Reynolds number ReD=648. This three-dimensional analysis with the same geometry and flow conditions as reported by Armaly et al. (1983) reveals the formation of wall jets at the side wall within the separating shear layer. The wall jets formed by the spanwise component of the velocity move towards the symmetry plane of the channel. A self-similar wall-jet profile emerges at different spanwise locations starting with the vicinity of the side wall. These results complement information on backward-facing step flows that is available in the literature.


1996 ◽  
Vol 322 ◽  
pp. 215-241 ◽  
Author(s):  
Dwight Barkley ◽  
Ronald D. Henderson

Results are reported from a highly accurate, global numerical stability analysis of the periodic wake of a circular cylinder for Reynolds numbers between 140 and 300. The analysis shows that the two-dimensional wake becomes (absolutely) linearly unstable to three-dimensional perturbations at a critical Reynolds number of 188.5±1.0. The critical spanwise wavelength is 3.96 ± 0.02 diameters and the critical Floquet mode corresponds to a ‘Mode A’ instability. At Reynolds number 259 the two-dimensional wake becomes linearly unstable to a second branch of modes with wavelength 0.822 diameters at onset. Stability spectra and corresponding neutral stability curves are presented for Reynolds numbers up to 300.


2008 ◽  
Vol 599 ◽  
pp. 341-362 ◽  
Author(s):  
HANG DING ◽  
PETER D. M. SPELT

We investigate the critical conditions for the onset of motion of a three-dimensional droplet on a wall in shear flows at moderate Reynolds number. A diffuse-interface method is used for this purpose, which also circumvents the stress singularity at the moving contact line, and the method allows for a density and viscosity contrast between the fluids. Contact-angle hysteresis is represented by the prescription of a receding contact angle θRand an advancing contact angle value θA. Critical conditions are determined by tracking the motion and deformation of a droplet (initially a spherical cap with a uniform contact angle θ0). At sufficiently low values of a Weber number,We(based on the applied shear rate and the drop volume), the drop deforms and translates for some time, but subsequently reaches a stationary position and attains a steady-state shape. At sufficiently large values ofWeno such steady state is found. We present results for the critical value ofWeas a function of Reynolds numberRefor cases with the initial value of the contact angle θ0=θRas well as for θ0=θA. A scaling argument based on a force balance on the drop is shown to represent the results very accurately. Results are also presented for the static shape, transient motion and flow structure at criticality. It is shown that at lowReour results agree (with some qualifications) with those of Dimitrakopoulos & Higdon (1998,J. Fluid Mech. vol. 377, p. 189). Overall, the results indicate that the critical value ofWeis affected significantly by inertial effects at moderate Reynolds numbers, whereas the steady shape of droplets still shows some resemblance to that obtained previously for creeping flow conditions. The paper concludes with an investigation into the complex structure of a steady wake behind the droplet and the occurrence of a stagnation point at the upstream side of the droplet.


1974 ◽  
Vol 63 (3) ◽  
pp. 529-536 ◽  
Author(s):  
A. Davey ◽  
L. M. Hocking ◽  
K. Stewartson

The equations governing the nonlinear development of a centred three-dimensional disturbance to plane parallel flow at slightly supercritical Reynolds numbers are obtained, In contrast to the corresponding equation for two-dimensional disturbances, two slowly varying functions are needed to describe the development: the amplitude function and a function related to the secular pressure gradient produced by the disturbance. These two functions satisfy a pair of coupled partial differential equations. The equations derived in Hocking, Stewartson & Stuart (1972) are shown to be incorrect, Some of the properties of the governing equations are discussed briefly.


2002 ◽  
Vol 473 ◽  
pp. 167-190 ◽  
Author(s):  
DWIGHT BARKLEY ◽  
M. GABRIELA M. GOMES ◽  
RONALD D. HENDERSON

Results are reported from a three-dimensional computational stability analysis of flow over a backward-facing step with an expansion ratio (outlet to inlet height) of 2 at Reynolds numbers between 450 and 1050. The analysis shows that the first absolute linear instability of the steady two-dimensional flow is a steady three-dimensional bifurcation at a critical Reynolds number of 748. The critical eigenmode is localized to the primary separation bubble and has a flat roll structure with a spanwise wavelength of 6.9 step heights. The system is further shown to be absolutely stable to two-dimensional perturbations up to a Reynolds number of 1500. Stability spectra and visualizations of the global modes of the system are presented for representative Reynolds numbers.


2008 ◽  
Vol 603 ◽  
pp. 189-206 ◽  
Author(s):  
S. MASUDA ◽  
S. FUKUDA ◽  
M. NAGATA

We analyse the stability of plane Poiseuille flow with a streamwise system rotation. It is found that the instability due to two-dimensional perturbations, which sets in at the well-known critical Reynolds number, Rc = 5772.2, for the non-rotating case, is delayed as the rotation is increased from zero, showing a stabilizing effect of rotation. As the rotation is increased further, however, the laminar flow becomes most unstable to perturbations which are three-dimensional. The critical Reynolds number due to three-dimensional perturbations at this higher rotation case is many orders of magnitude less than the corresponding value due to two-dimensional perturbations. We also perform a nonlinear analysis on a bifurcating three-dimensional secondary flow. The secondary flow exhibits a spiral vortex structure propagating in the streamwise direction. It is confirmed that an antisymmetric mean flow in the spanwise direction is generated in the secondary flow.


Sign in / Sign up

Export Citation Format

Share Document