scholarly journals Estimating Ratios of Snow Accumulation in Antarctica by Chemical Methods

1981 ◽  
Vol 27 (96) ◽  
pp. 347-357 ◽  
Author(s):  
J. A Warburton ◽  
L. G. Young

Abstract Snow and firn samples from 2 and 5 m deep pits were analyzed for seven sites on the Ross Ice Shelf, Antarctica. Na, Mg, Ca, and K concentrations change with depth, the range of concentrations being approximately 10 : 1 for all four elements. The changes in concentrations for the four elements at any one site are highly correlated, suggesting that the impurities are introduced into the snow-pack simultaneously by the same mechanisms. Pronounced periodic structure of the vertical chemical profiles leads to strong correlations (γ> 0.9) of the chemical features from site to site separated by distances up to 440 km. Assuming that the observed chemical features are periodic as a function of depth due to temporal variations caused by large-scale phenomena, then the wavelength (in depth) of these features should be proportional to the accumulation. Under the assumptions, the linear regression ratio of one site to another will give the relative accumulations at these sites. The ratios of snow accumulation estimated by these chemical methods agree, within a few per cent, with the ratios for the same sites estimated by total β-activity or stratigraphic methods. It is suggested that the chemical variations with depth are caused by meteorological events which may have seasonal changes in frequency and intensity. It is also suggested that the most-favored season for the production of chemical-concentration maxima is autumn because of the documented higher frequency of precipitating storms on the Ross Ice Shelf and the minimum in sea-ice extent at that time of year.

1981 ◽  
Vol 27 (96) ◽  
pp. 347-357
Author(s):  
J. A Warburton ◽  
L. G. Young

AbstractSnow and firn samples from 2 and 5 m deep pits were analyzed for seven sites on the Ross Ice Shelf, Antarctica. Na, Mg, Ca, and K concentrations change with depth, the range of concentrations being approximately 10 : 1 for all four elements. The changes in concentrations for the four elements at any one site are highly correlated, suggesting that the impurities are introduced into the snow-pack simultaneously by the same mechanisms.Pronounced periodic structure of the vertical chemical profiles leads to strong correlations (γ> 0.9) of the chemical features from site to site separated by distances up to 440 km.Assuming that the observed chemical features are periodic as a function of depth due to temporal variations caused by large-scale phenomena, then the wavelength (in depth) of these features should be proportional to the accumulation. Under the assumptions, the linear regression ratio of one site to another will give the relative accumulations at these sites. The ratios of snow accumulation estimated by these chemical methods agree, within a few per cent, with the ratios for the same sites estimated by total β-activity or stratigraphic methods.It is suggested that the chemical variations with depth are caused by meteorological events which may have seasonal changes in frequency and intensity. It is also suggested that the most-favored season for the production of chemical-concentration maxima is autumn because of the documented higher frequency of precipitating storms on the Ross Ice Shelf and the minimum in sea-ice extent at that time of year.


2009 ◽  
Vol 137 (11) ◽  
pp. 4030-4046 ◽  
Author(s):  
Daniel F. Steinhoff ◽  
Saptarshi Chaudhuri ◽  
David H. Bromwich

Abstract A case study illustrating cloud processes and other features associated with the Ross Ice Shelf airstream (RAS), in Antarctica, is presented. The RAS is a semipermanent low-level wind regime primarily over the western Ross Ice Shelf, linked to the midlatitude circulation and formed from terrain-induced and large-scale forcing effects. An integrated approach utilizes Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery, automatic weather station (AWS) data, and Antarctic Mesoscale Prediction System (AMPS) forecast output to study the synoptic-scale and mesoscale phenomena involved in cloud formation over the Ross Ice Shelf during a RAS event. A synoptic-scale cyclone offshore of Marie Byrd Land draws moisture across West Antarctica to the southern base of the Ross Ice Shelf. Vertical lifting associated with flow around the Queen Maud Mountains leads to cloud formation that extends across the Ross Ice Shelf to the north. The low-level cloud has a warm signature in thermal infrared imagery, resembling a surface feature of turbulent katabatic flow typically ascribed to the RAS. Strategically placed AWS sites allow assessment of model performance within and outside of the RAS signature. AMPS provides realistic simulation of conditions aloft but experiences problems at low levels due to issues with the model PBL physics. Key meteorological features of this case study, within the context of previous studies on longer time scales, are inferred to be common occurrences. The assumption that warm thermal infrared signatures are surface features is found to be too restrictive.


2009 ◽  
Vol 3 (3) ◽  
pp. 1069-1107 ◽  
Author(s):  
D. J. Lampkin ◽  
C. C. Karmosky

Abstract. Surface melt has been increasing over recent years, especially over the Antarctic Peninsula, contributing to disintegration of shelves such as Larsen. Unfortunately, we are not realistically able to quantify surface snowmelt from ground-based methods because there is sparse coverage of automatic weather stations. Satellite based assessments of melt from passive microwave systems are limited in that they only provide an indication of melt occurrence and have coarse spatial resolution. An algorithm was developed to retrieve surface melt magnitude using coupled near-IR/thermal surface measurements from MODIS were calibrated by estimates of liquid water fraction (LWF) in the upper 1 cm of the firn derived from a one-dimensional physical snowmelt model (SNTHERM89). For the modeling phase of this study, SNTHERM89 was forced by hourly meteorological data from automatic weather station data at reference sites spanning a range of melt conditions across the Ross Ice Shelf during a relatively intense melt season (2002). Effective melt magnitude or LWF<eff> were derived for satellite composite periods covering the Antarctic summer months at a 4 km resolution over the entire Ross Ice Shelf, ranging from 0–0.5% LWF<eff> in early December to areas along the coast with as much as 1% LWF<eff> during the time of peak surface melt. Spatial and temporal variations in the magnitude of surface melt are related to both katabatic wind strength and advection during onshore flow.


2021 ◽  
Author(s):  
Yuzhen Yan ◽  
Nicole E. Spaulding ◽  
Michael L. Bender ◽  
Edward J. Brook ◽  
John A. Higgins ◽  
...  

Abstract. The S27 ice core, drilled in the Allan Hills Blue Ice Area of East Antarctica, is located in Southern Victoria Land ~80 km away from the present-day northern edge of the Ross Ice Shelf. Here, we utilize the reconstructed accumulation rate of S27 covering the Last Interglacial (LIG) period between 129 and 116 thousand years before present (ka) to infer moisture transport into the region. The accumulation rate is based on the ice age-gas age differences calculated from the ice chronology, which is constrained by the stable water isotopes of the ice, and an improved gas chronology based on measurements of oxygen isotopes of O2 in the trapped gases. The peak accumulation rate in S27 occurred at 128.2 ka, near the peak LIG warming in Antarctica. Even the most conservative estimate yields a six-fold increase in the accumulation rate in the LIG, whereas other Antarctic ice cores are typically characterized by a glacial-interglacial difference of a factor of two to three. While part of the increase in S27 accumulation rates must originate from changes in the large-scale atmospheric circulation, additional mechanisms are needed to explain the large changes. We hypothesize that the exceptionally high snow accumulation recorded in S27 reflects open-ocean conditions in the Ross Sea, created by reduced sea ice extent and increased polynya size, and perhaps by a southward retreat of the Ross Ice Shelf relative to its present-day position near the onset of LIG. The proposed ice shelf retreat would also be compatible with a sea-level high stand around 129 ka significantly sourced from West Antarctica. The peak in S27 accumulation rates is transient, suggesting that if the Ross Ice Shelf had indeed retreated during the early LIG, it would have re-advanced by 125 ka.


1996 ◽  
Vol 23 ◽  
pp. 46-51 ◽  
Author(s):  
D. R. MacAyeal ◽  
V. Rommelaere ◽  
P. Huybrechts ◽  
C. L. Hulbe ◽  
J. Determann ◽  
...  

A standard numerical experiment featuring the Ross Ice Shelf, Antarctica, is presented as a test package for the development and intercomparison of ice-shelf models. The emphasis of this package is solution of stress-equilibrium equations for an ice-shelf velocity consistent with present observations. As a demonstration, we compare five independently developed ice-shelf models based on finite-difference and finite-element methods. Our results suggest that there is little difference between finite-element and finite-difference methods in capturing the basic, large-scale flow features of the ice shelf. We additionally show that the fit between model and observed velocity depends strongly on the ice-shelf temperature field, for which there is presently little observational control. The main differences between model results are due to the equations being solved, the boundary conditions at the ice from and the discretization method (finite element vs finite difference).


1978 ◽  
Vol 20 (84) ◽  
pp. 509-518 ◽  
Author(s):  
Robert H. Thomas ◽  
Charles R. Bentley

AbstractMeasurements of ice thickness, velocity, snow accumulation rates, and surface strain-rates are used to examine the state of equilibrium of three flow bands of the Ross Ice Shelf. The analysis gives the rate of thickening of the ice shelf in terms of the basal freezing rate, which is unknown. However, indirect evidence suggests that the basal flux ranges from a small value of freezing in the south to a melting rate of about one meter of ice per year at the ice front. If these values are correct then the flow band in the south-east corner of the ice shelf appears to be thickening at an average value of (34 ± 15) cm of ice per year. Persistent thickening at this rate must lead to grounding of large areas of the ice shelf. This would restrict drainage from West Antarctic ice streams which feed this part of the ice shelf and these would tend to thicken and advance their grounding lines into the ice shelf. Further north, near the RISP bore-hole site, the ice shelf is probably in equilibrium. The largest flow band is to the south and east of Roosevelt Island, and this also may be in equilibrium if there is significant bottom melting from ice shelf that is more than 100 km from the ice front.


1997 ◽  
Vol 24 ◽  
pp. 43-48 ◽  
Author(s):  
Vincent Rommelaere ◽  
Douglas R. MacAyeal

Measurements made during the Ross Ice Shelf Geophysical and Glaciological Survey (RIGGS, 1973–78) are used to determine the large-scale rheological conditions of the Ross Ice Shelf, Antarctica. Our method includes a numerical ice-shelf model based on the stress-equilibrium equations and control theory. We additionally perform a few tests on simplified geometries to investigate the precision of our method. Our results consist of a map of the depth-averaged viscosity of the central part of the Ross Ice Shelf to within an uncertainty of 20%. We find that the viscosity variations are consistent with Glen’s flow law. Application of a more realistic flow law in our study provides little enhancement of ice-shelf model accuracy until uncertainties associated with basal melting conditions and with temperature profiles at inflow boundaries are addressed. Finally, our results suggest a strong viscosity anomaly in the west-central part of the ice shelf, which is interpreted to be associated with changes in the dynamics of Ice Stream A or B at least 1000 years ago. This feature conforms to the prevailing notion that the West Antarctic ice streams are unsteady.


1986 ◽  
Vol 32 (110) ◽  
pp. 72-86 ◽  
Author(s):  
D.R. MacAyeal ◽  
R.H. Thomas

AbstractWe use a hybrid finite-element/finite-difference model of ice-shelf flow and heat transfer to investigate the effects of basal melting on the present observed flow of the Ross Ice Shelf, Two hypothetical basal melting scenarios are compared: (i) zero melting everywhere and (ii) melting sufficient to balance any large-scale patterns of ice-shelf thickening that would otherwise occur. As a result of the temperature-dependent flow law (which we idealize as having a constant activation energy of 120 kJ mol−1, a scaling coefficient of 1.3 N m−2s1/3, and an exponent of 3), simulated ice-shelf velocities for the second scenario are reduced by up to 20% below those of the first. Our results support the hypothesis that melting patterns presently maintain ice thickness in steady state and conform to patterns of oceanic circulation presently thought to ventilate the sub-ice cavity. Differences between the simulated and observed velocities are too large in the extreme south-eastern quarter of the ice shelf to permit verification of either basal melting scenario. These differences highlight the need to improve model boundary conditions at points where ice streams feed the ice shelf and where the ice shelf meets stagnant grounded ice.


1978 ◽  
Vol 20 (84) ◽  
pp. 509-518 ◽  
Author(s):  
Robert H. Thomas ◽  
Charles R. Bentley

AbstractMeasurements of ice thickness, velocity, snow accumulation rates, and surface strain-rates are used to examine the state of equilibrium of three flow bands of the Ross Ice Shelf. The analysis gives the rate of thickening of the ice shelf in terms of the basal freezing rate, which is unknown. However, indirect evidence suggests that the basal flux ranges from a small value of freezing in the south to a melting rate of about one meter of ice per year at the ice front. If these values are correct then the flow band in the south-east corner of the ice shelf appears to be thickening at an average value of (34 ± 15) cm of ice per year. Persistent thickening at this rate must lead to grounding of large areas of the ice shelf. This would restrict drainage from West Antarctic ice streams which feed this part of the ice shelf and these would tend to thicken and advance their grounding lines into the ice shelf. Further north, near the RISP bore-hole site, the ice shelf is probably in equilibrium. The largest flow band is to the south and east of Roosevelt Island, and this also may be in equilibrium if there is significant bottom melting from ice shelf that is more than 100 km from the ice front.


1986 ◽  
Vol 32 (112) ◽  
pp. 464-474 ◽  
Author(s):  
S. S. Jacobs ◽  
D. R. Macayeal ◽  
J. L. Ardai

AbstractThe seaward edge of the Ross Ice Shelf advanced northward at a minimum average velocity of 0.8 km a–1 between 1962 and 1985. That advance approximated velocities that have been obtained from glaciological data, indicating little recent wastage by iceberg calving. West of long. 178° E., the ice shelf has attained its most northerly position in the past 145 years, and has not experienced a major calving episode for at least 75 years. Since 1841 the ice-front position has advanced and retreated within a zone from about lat. 77° 10’S. (near long. 171° E.) to lat. 78° 40’ S. (near long. 164° W.). The central ice front is now farthest south but has the highest advance rate. Calving may occur at more frequent intervals in that sector, which also overlies the warmest ocean currents that flow into the sub-ice-shelf cavity. Available information on ice-shelf advance, thickness, spreading rate, and surface accumulation indicates a basal melting rate around 3 m a–1 near the ice front. These data and independent estimates imply that basal melting is nearly as large a factor as iceberg calving in maintaining the ice-shelf mass balance. In recent years, the Ross, Ronne, and Filchner Ice Shelves have contributed few icebergs to the Southern Ocean, while projections from a contemporaneous iceberg census are that circumpolar calving alone may exceed accumulation on the ice sheet. Large-scale ice-shelf calving may have preceded historical sightings of increased numbers of icebergs at sea.


Sign in / Sign up

Export Citation Format

Share Document