scholarly journals The Recent Advance of the Ross Ice Shelf Antarctica

1986 ◽  
Vol 32 (112) ◽  
pp. 464-474 ◽  
Author(s):  
S. S. Jacobs ◽  
D. R. Macayeal ◽  
J. L. Ardai

AbstractThe seaward edge of the Ross Ice Shelf advanced northward at a minimum average velocity of 0.8 km a–1 between 1962 and 1985. That advance approximated velocities that have been obtained from glaciological data, indicating little recent wastage by iceberg calving. West of long. 178° E., the ice shelf has attained its most northerly position in the past 145 years, and has not experienced a major calving episode for at least 75 years. Since 1841 the ice-front position has advanced and retreated within a zone from about lat. 77° 10’S. (near long. 171° E.) to lat. 78° 40’ S. (near long. 164° W.). The central ice front is now farthest south but has the highest advance rate. Calving may occur at more frequent intervals in that sector, which also overlies the warmest ocean currents that flow into the sub-ice-shelf cavity. Available information on ice-shelf advance, thickness, spreading rate, and surface accumulation indicates a basal melting rate around 3 m a–1 near the ice front. These data and independent estimates imply that basal melting is nearly as large a factor as iceberg calving in maintaining the ice-shelf mass balance. In recent years, the Ross, Ronne, and Filchner Ice Shelves have contributed few icebergs to the Southern Ocean, while projections from a contemporaneous iceberg census are that circumpolar calving alone may exceed accumulation on the ice sheet. Large-scale ice-shelf calving may have preceded historical sightings of increased numbers of icebergs at sea.

1986 ◽  
Vol 32 (112) ◽  
pp. 464-474 ◽  
Author(s):  
S. S. Jacobs ◽  
D. R. Macayeal ◽  
J. L. Ardai

AbstractThe seaward edge of the Ross Ice Shelf advanced northward at a minimum average velocity of 0.8 km a–1between 1962 and 1985. That advance approximated velocities that have been obtained from glaciological data, indicating little recent wastage by iceberg calving. West of long. 178° E., the ice shelf has attained its most northerly position in the past 145 years, and has not experienced a major calving episode for at least 75 years. Since 1841 the ice-front position has advanced and retreated within a zone from about lat. 77° 10’S. (near long. 171° E.) to lat. 78° 40’ S. (near long. 164° W.). The central ice front is now farthest south but has the highest advance rate. Calving may occur at more frequent intervals in that sector, which also overlies the warmest ocean currents that flow into the sub-ice-shelf cavity. Available information on ice-shelf advance, thickness, spreading rate, and surface accumulation indicates a basal melting rate around 3 m a–1near the ice front. These data and independent estimates imply that basal melting is nearly as large a factor as iceberg calving in maintaining the ice-shelf mass balance. In recent years, the Ross, Ronne, and Filchner Ice Shelves have contributed few icebergs to the Southern Ocean, while projections from a contemporaneous iceberg census are that circumpolar calving alone may exceed accumulation on the ice sheet. Large-scale ice-shelf calving may have preceded historical sightings of increased numbers of icebergs at sea.


2018 ◽  
Vol 12 (10) ◽  
pp. 3187-3213 ◽  
Author(s):  
Veronika Emetc ◽  
Paul Tregoning ◽  
Mathieu Morlighem ◽  
Chris Borstad ◽  
Malcolm Sambridge

Abstract. Antarctica and Greenland hold enough ice to raise sea level by more than 65 m if both ice sheets were to melt completely. Predicting future ice sheet mass balance depends on our ability to model these ice sheets, which is limited by our current understanding of several key physical processes, such as iceberg calving. Large-scale ice flow models either ignore this process or represent it crudely. To model fractured zones, an important component of many calving models, continuum damage mechanics as well as linear fracture mechanics are commonly used. However, these methods have a large number of uncertainties when applied across the entire Antarctic continent because the models were typically tuned to match processes seen on particular ice shelves. Here we present an alternative, statistics-based method to model the most probable zones of the location of fractures and demonstrate our approach on all main ice shelf regions in Antarctica, including the Antarctic Peninsula. We can predict the location of observed fractures with an average success rate of 84 % for grounded ice and 61 % for floating ice and a mean overestimation error rate of 26 % and 20 %, respectively. We found that Antarctic ice shelves can be classified into groups based on the factors that control fracture location.


1997 ◽  
Vol 24 ◽  
pp. 43-48 ◽  
Author(s):  
Vincent Rommelaere ◽  
Douglas R. MacAyeal

Measurements made during the Ross Ice Shelf Geophysical and Glaciological Survey (RIGGS, 1973–78) are used to determine the large-scale rheological conditions of the Ross Ice Shelf, Antarctica. Our method includes a numerical ice-shelf model based on the stress-equilibrium equations and control theory. We additionally perform a few tests on simplified geometries to investigate the precision of our method. Our results consist of a map of the depth-averaged viscosity of the central part of the Ross Ice Shelf to within an uncertainty of 20%. We find that the viscosity variations are consistent with Glen’s flow law. Application of a more realistic flow law in our study provides little enhancement of ice-shelf model accuracy until uncertainties associated with basal melting conditions and with temperature profiles at inflow boundaries are addressed. Finally, our results suggest a strong viscosity anomaly in the west-central part of the ice shelf, which is interpreted to be associated with changes in the dynamics of Ice Stream A or B at least 1000 years ago. This feature conforms to the prevailing notion that the West Antarctic ice streams are unsteady.


1986 ◽  
Vol 32 (110) ◽  
pp. 72-86 ◽  
Author(s):  
D.R. MacAyeal ◽  
R.H. Thomas

AbstractWe use a hybrid finite-element/finite-difference model of ice-shelf flow and heat transfer to investigate the effects of basal melting on the present observed flow of the Ross Ice Shelf, Two hypothetical basal melting scenarios are compared: (i) zero melting everywhere and (ii) melting sufficient to balance any large-scale patterns of ice-shelf thickening that would otherwise occur. As a result of the temperature-dependent flow law (which we idealize as having a constant activation energy of 120 kJ mol−1, a scaling coefficient of 1.3 N m−2s1/3, and an exponent of 3), simulated ice-shelf velocities for the second scenario are reduced by up to 20% below those of the first. Our results support the hypothesis that melting patterns presently maintain ice thickness in steady state and conform to patterns of oceanic circulation presently thought to ventilate the sub-ice cavity. Differences between the simulated and observed velocities are too large in the extreme south-eastern quarter of the ice shelf to permit verification of either basal melting scenario. These differences highlight the need to improve model boundary conditions at points where ice streams feed the ice shelf and where the ice shelf meets stagnant grounded ice.


2020 ◽  
Vol 66 (258) ◽  
pp. 643-657 ◽  
Author(s):  
Cyrille Mosbeux ◽  
Till J. W. Wagner ◽  
Maya K. Becker ◽  
Helen A. Fricker

AbstractThe Antarctic Ice Sheet loses mass via its ice shelves predominantly through two processes: basal melting and iceberg calving. Iceberg calving is episodic and infrequent, and not well parameterized in ice-sheet models. Here, we investigate the impact of hydrostatic forces on calving. We develop two-dimensional elastic and viscous numerical frameworks to model the ‘footloose’ calving mechanism. This mechanism is triggered by submerged ice protrusions at the ice front, which induce unbalanced buoyancy forces that can lead to fracturing. We compare the results to identify the different roles that viscous and elastic deformations play in setting the rate and magnitude of calving events. Our results show that, although the bending stresses in both frameworks share some characteristics, their differences have important implications for modeling the calving process. In particular, the elastic model predicts that maximum stresses arise farther from the ice front than in the viscous model, leading to larger calving events. We also find that the elastic model would likely lead to more frequent events than the viscous one. Our work provides a theoretical framework for the development of a better understanding of the physical processes that govern glacier and ice-shelf calving cycles.


1997 ◽  
Vol 24 ◽  
pp. 43-48 ◽  
Author(s):  
Vincent Rommelaere ◽  
Douglas R. MacAyeal

Measurements made during the Ross Ice Shelf Geophysical and Glaciological Survey (RIGGS, 1973–78) are used to determine the large-scale rheological conditions of the Ross Ice Shelf, Antarctica. Our method includes a numerical ice-shelf model based on the stress-equilibrium equations and control theory. We additionally perform a few tests on simplified geometries to investigate the precision of our method. Our results consist of a map of the depth-averaged viscosity of the central part of the Ross Ice Shelf to within an uncertainty of 20%. We find that the viscosity variations are consistent with Glen’s flow law. Application of a more realistic flow law in our study provides little enhancement of ice-shelf model accuracy until uncertainties associated with basal melting conditions and with temperature profiles at inflow boundaries are addressed. Finally, our results suggest a strong viscosity anomaly in the west-central part of the ice shelf, which is interpreted to be associated with changes in the dynamics of Ice Stream A or B at least 1000 years ago. This feature conforms to the prevailing notion that the West Antarctic ice streams are unsteady.


1982 ◽  
Vol 3 ◽  
pp. 279-283 ◽  
Author(s):  
John M. Reynolds

A georesistivity survey was made on part of George VI Ice Shelf (71°55'S, 67°20'W). The principal objectives were to determine the electrical structure of the 1ce shelf, in particular how refrozen melt water differs in electrical behaviour from dry firn, and to Investigate the environment beneath the ice shelf.Apparent resistivity profiles using a Schlumberger electrode configuration have been interpreted using Ghosh's convolution method for vertical electrical sounding (VES), adapted for use where extreme resistivity contrasts are present.Warm, wet surface conditions tend to reduce the gross resistivity of shallow permeable layers. The electrical results indicate that the refrozen free water has affected the resistivity only indirectly; the mean density of firn is raised to about 0.915 Mg m−3within the uppermost 10 m of the ice shelf at which point the resistivity is comparable to that of Ice of the same density but formed by compaction of firn. The apparent resistivities in the top 100 m reflect the variation of density with depth; a small range of resistivities implies that the range of density 1s narrow and that densification is affected by the percolation and refreezing of melt water.The bulk of the ice behaves as if resistivity either Is independent of temperature or has only a slight dependence (activation energy ~0.15 eV) with a basal melting rate in excess of 1 to 2 m a−1. The principal resistivities determined for two sites on George VI Ice Shelf were within 10% of those at station BC on the Ross Ice Shelf, allowing for differences in temperature. This Indicates that polar ice, I.e. non-temperate ice, has a very narrow range of resistivity. The apparent resistivity profiles are consistent with there being sea-water of oceanic salinity under the Ice shelf.


2021 ◽  
Author(s):  
Shuai Yan ◽  
Donald D. Blankenship ◽  
Duncan A. Young ◽  
Jamin S. Greenbaum ◽  
Lin Li ◽  
...  

<p>The Princess Elizabeth Land (PEL) sector of the East Antarctic Ice Sheet, one of the largest grounded ice reservoirs in Antarctica, is adjacent to regions that experienced significant change during the last glacial maximum. The identification of subglacial water in PEL (to date only inferred from satellite image data) would provide important constraints on our estimation of the basal thermal condition in this region. Also, the existence of a large subglacial hydrology system in PEL comes with potential impacts on the basal melting rate and stability of downstream ice shelves, such as the West Ice Shelf. Here we present geophysical evidences confirming the existence of a large subglacial lake in PEL, hereby referred as Lake Snow Eagle (LSE), for the first time, using recently acquired aerogeophyscial data by international collaborations. We estimate LSE to be about 42 km in length and 370 km<sup>2</sup> in area, making it one of the largest subglacial lakes in Antarctica. LSE is shown to lie in a subglacial canyon system that is linked to the coastal ice shelves, which makes LSE the first known major Antarctic interior water body that has a potential direct hydrological pathway into the ocean. We then systematically investigate its geological characteristics and bathymetry by 2-D geophysics modellings. We estimate the water volume of LSE to be about 21 km<sup>3</sup>, while the sediment volume to be about 20 km<sup>3</sup>. Our geophysical modelling results also suggest that LSE is located along a compressional geologic boundary, indicating possible tectonic controls over LSE.</p>


1988 ◽  
Vol 11 ◽  
pp. 202
Author(s):  
D. R. MacAyeal ◽  
R. A. Bindschadler

Field data is presented to support the hypothesis that Crary Ice Rise (on Ross Ice Shelf, Fig. 1) has substantially increased in area over the last 500 years, in response to ice advection through the mouth of Ice Stream B. The up-stream end of the ice rise is now surrounded by ice shelf that is currently thickening at 0.44 0.06 m/year (under an assumed zero basal melting rate). This rate of thickening suggests that the ice rise's contribution to back-stress resistance of Ice Stream B's flow, presently calculated to be 50% of the total back stress, is growing in the course of time. We speculate that this current development of the ice rise is the precursor to the possible future stagnation of Ice Stream B. It is convenient to conceptualize a possible see-saw oscillation between ice-stream surging and ice-rise build-up.


2015 ◽  
Vol 61 (226) ◽  
pp. 243-252 ◽  
Author(s):  
Catherine C. Walker ◽  
Jeremy N. Bassis ◽  
Helen A. Fricker ◽  
Robin J. Czerwinski

AbstractIceberg calving and basal melting are the two primary mass loss processes from the Antarctic ice sheet, accounting for approximately equal amounts of mass loss. Basal melting under ice shelves has been increasingly well constrained in recent work, but changes in iceberg calving rates remain poorly quantified. Here we examine the processes that precede iceberg calving, and focus on initiation and propagation of ice-shelf rifts. Using satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging Spectroradiometer (MISR), we monitored five active rifts on the Amery Ice Shelf, Antarctica, from 2002 to 2014. We found a strong seasonal component: propagation rates were highest during (austral) summer and nearly zero during winter. We found substantial variability in summer propagation rates, but found no evidence that the variability was correlated with large-scale environmental drivers, such as atmospheric temperature, winds or sea-ice concentration. We did find a positive correlation between large propagation events and the arrival of tsunamis in the region. The variability appears to be related to visible structural boundaries within the ice shelf, e.g. suture zones or crevasse fields. This suggests that a complete understanding of rift propagation and iceberg calving needs to consider local heterogeneities within an ice shelf.


Sign in / Sign up

Export Citation Format

Share Document