Physical environment of drumlin formation

1995 ◽  
Vol 41 (137) ◽  
pp. 30-38 ◽  
Author(s):  
Carrie J. Patterson ◽  
Roger LeB. Hooke

AbstractReview of published descriptions of drumlin fields suggests that the following conditions are important to drumlin growth: (1) compressive longitudinal and possibly extending transverse strain rates in the ice, (2) thin ice such as occurs near the glacier margin, and (3) high pore-water pressure in the subglacial sediments. Most drumlin fields display all of these, and no fields of well-developed drumlins were found that did not. On the oilier hand, the lithology of drumlin-forming sediment appears not to be important in promoting drumlin growth, since it varied widely, nor are the lithology and large-scale topography of the bed.

1995 ◽  
Vol 41 (137) ◽  
pp. 30-38 ◽  
Author(s):  
Carrie J. Patterson ◽  
Roger LeB. Hooke

AbstractReview of published descriptions of drumlin fields suggests that the following conditions are important to drumlin growth: (1) compressive longitudinal and possibly extending transverse strain rates in the ice, (2) thin ice such as occurs near the glacier margin, and (3) high pore-water pressure in the subglacial sediments. Most drumlin fields display all of these, and no fields of well-developed drumlins were found that did not. On the oilier hand, the lithology of drumlin-forming sediment appears not to be important in promoting drumlin growth, since it varied widely, nor are the lithology and large-scale topography of the bed.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 502
Author(s):  
Jinman Kim ◽  
Heuisoo Han ◽  
Yoonhwa Jin

This paper shows the results of a field appliance study of the hydraulic well method to prevent embankment piping, which is proposed by the Japanese Matsuyama River National Highway Office. The large-scale embankment experiment and seepage analysis were conducted to examine the hydraulic well. The experimental procedure is focused on the pore water pressure. The water levels of the hydraulic well were compared with pore water pressure data, which were used to look over the seepage variations. Two different types of large-scale experiments were conducted according to the installation points of hydraulic wells. The seepage velocity results by the experiment were almost similar to those of the analyses. Further, the pore water pressure oriented from the water level variations in the hydraulic well showed similar patterns between the experiment and numerical analysis; however, deeper from the surface, the larger pore water pressure of the numerical analysis was calculated compared to the experimental values. In addition, the piping effect according to the water level and location of the hydraulic well was quantitatively examined for an embankment having a piping guide part. As a result of applying the hydraulic well to the point where piping occurred, the hydraulic well with a 1.0 m water level reduced the seepage velocity by up to 86%. This is because the difference in the water level between the riverside and the protected side is reduced, and it resulted in reducing the seepage pressure. As a result of the theoretical and numerical hydraulic gradient analysis according to the change in the water level of the hydraulic well, the hydraulic gradient decreased linearly according to the water level of the hydraulic well. From the results according to the location of the hydraulic well, installation of it at the point where piping occurred was found to be the most effective. A hydraulic well is a good device for preventing the piping of an embankment if it is installed at the piping point and the proper water level of the hydraulic well is applied.


2020 ◽  
Vol 15 (12) ◽  
pp. 3571-3591
Author(s):  
Bartłomiej Szczepan Olek

AbstractConsolidation rate has significant influence on the settlement of structures founded on soft fine-grained soil. This paper presents the results of a series of small-scale and large-scale Rowe cell consolidation tests with pore water pressure measurements to investigate the factors affecting the consolidation process. Permeability and creep/resistance structure factors were considered as the governing factors. Intact and reconstituted marine clay from the Polish Carpathian Foredeep basin as well as clay–sand mixtures was examined in the present study. The fundamental relationship correlating consolidation degrees based on compression and pore water pressure was assessed to indicate the nonlinear soil behaviour. It was observed that the instantaneous consolidation parameters vary as the process progresses. The instantaneous coefficient of consolidation first drastically increases or decreases with increase in the degree of consolidation and stabilises in the middle stage of the consolidation; it then decreases significantly due to viscoplastic effects occurring in the soil structure. Based on the characteristics of the relationship between coefficient of consolidation and degree of dissipation at the base, the consolidation range that complies with theoretical assumptions was established. Furthermore, the influence of coarser fraction in clay–sand mixtures in controlling the consolidation rates is discussed.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Qian Yin ◽  
Hongwen Jing ◽  
Tantan Zhu ◽  
Lizhou Wu ◽  
Haijian Su ◽  
...  

This study analyzes the spatiotemporal evolution characteristics of seepage through a large-scale rock mass containing a filling joint. Firstly, a conceptual model was established to characterize the geomechanical occurrence of a typical water-resistant slab adjacent to a water-bearing structure. Then, a special apparatus was developed to conduct a hydromechanical test of a 3D large-scale rock mass. For a certain boundary stress and inlet water pressure, the pore water pressure in the joint first experiences a dramatic increase before approaching a constant value, and the steady pore water pressure presents a linear decrease along the joint length. A water inrush phenomenon happens as a result of connected flowing channels induced by migration of fillings. Using the finite element of COMSOL multiphysics, the influences of filling joint permeability, matrix permeability, and joint thickness as well as the inlet water pressure on seepage evolution in the jointed rock mass were, respectively, investigated. The pore water pressure increases with all these factors, and the stable pressure values increase with the inlet water pressure but decrease along the joint length. The flow velocity undergoes an increase with both the joint permeability and inlet water pressure but presents constant values independent on the matrix permeability or joint thickness. The water pressure contour planes distributed along the flowing path generally transfer from a “long funnel” shape to a “short funnel” shape before reaching a series of parallel pressure planes perpendicular to the joint direction. By using the genetic algorithm, the coupling influences of these factors on the pore water pressure and flow velocity were investigated, and the decision parameters were optimized. The calculated values show a good agreement with the numerical results, indicating a good prediction of the seepage evolution through the filling joint.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yu Liang ◽  
Yufei Xiao ◽  
Yuexiang Lin

When shield tunnelling is in a water-rich sand stratum with poor bearing capacity, instability is easily generated, and even ground collapses may occur. The variation of pore water pressure in a water-rich sand stratum during shield tunnelling was analyzed based on a large-scale cross-river shield tunnel in China, which was also investigated by a three-dimensional fluid-solid coupling finite element model. The results show that the influence range of the pore water pressure in front of the excavation face is approximately 2.0 times the excavation diameter and 1.5 times on both sides of the shield. The tunnelling steps would cause obvious variation in the pore water pressure and lead to great disturbance to the surrounding fine sand stratum. The quality of filter cake and the set of support pressure imposes an important impact on the nonlinear variation in the pore pressure, which could cause great disturbance to the stratum. To ensure the safety of the subsequent tunnelling in the fine sand layer, effective treatment should be taken.


Author(s):  
Liu Zhen ◽  
Cheng Yongzhou ◽  
Zhang Huaqing ◽  
Meng Xiangwei ◽  
Jiang Yunpeng ◽  
...  

2012 ◽  
Vol 170-173 ◽  
pp. 457-460
Author(s):  
Fu Rong Li ◽  
Hou Chao Sun ◽  
Zhao Yu Wang

The mechanism of soil-compacting effect by silent piling is analyzed, and based on large-scale model box test, using soft clay of typical sites in Yancheng District, taking the single pile as the study objects respectively, and studying the soil compaction effects with the process of sinking into the single pile, analyzing the variation law of the soil deformation and pore water pressure while sinking into the single pile. The results shows that the greater the radial distance, the smaller of soil compaction effect, the influence scope of soil compaction effects on the displacement and pore water pressure reaches 0.6 times and 0.5 times the pile length sinking the single pile, which is accord to the actual engineering. The results could guide the pile foundation construction on soft soil.


Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


Sign in / Sign up

Export Citation Format

Share Document