scholarly journals Equilibrium-Line Altitudes, Mass Balance, and July Freezing-Level Heights in the Canadian High Arctic

1975 ◽  
Vol 14 (71) ◽  
pp. 267-274 ◽  
Author(s):  
R. S. Bradley

Equilibrium-line altitudes on the White Glacier, Axel Heiberg Island, and the north-west sector of the Devon Ice Cap are shown to be closely related to mean July freezing-level heights at nearby upper-air weather stations. An inverse relationship between July freezing-level heights and mass balance on the Devon Ice Cap is also shown. Reasons for such correlations are suggested and some limitations of the relationship are outlined. Recent lowering of the freezing level in July is discussed in relation to the theoretical “steady-state” equilibrium-line altitudes in the Canadian high Arctic. It is suggested that positive mass-balance years have predominated over a large part of northern Ellesmere Island and north-central Axel Heiberg Island since 1963, and some glaciological evidence supporting this hypothesis is given.

1975 ◽  
Vol 14 (71) ◽  
pp. 267-274 ◽  
Author(s):  
R. S. Bradley

AbstractEquilibrium-line altitudes on the White Glacier, Axel Heiberg Island, and the north-west sector of the Devon Ice Cap are shown to be closely related to mean July freezing-level heights at nearby upper-air weather stations. An inverse relationship between July freezing-level heights and mass balance on the Devon Ice Cap is also shown. Reasons for such correlations are suggested and some limitations of the relationship are outlined. Recent lowering of the freezing level in July is discussed in relation to the theoretical “steady-state” equilibrium-line altitudes in the Canadian high Arctic. It is suggested that positive mass-balance years have predominated over a large part of northern Ellesmere Island and north-central Axel Heiberg Island since 1963, and some glaciological evidence supporting this hypothesis is given.


1989 ◽  
Vol 12 ◽  
pp. 152-156 ◽  
Author(s):  
W.M. Sackinger ◽  
M.O. Jeffries ◽  
H. Tippens ◽  
F. Li ◽  
M. Lu

The largest ice island presently known to exist in the Arctic Ocean has a mass of about 700 × 106 tonnes, an area of about 26 km2, and a mean thickness of 42.5 m. Known as Hobson’s Ice Island, this large ice feature has been tracked almost continuously since August 1983 with a succession of Argos buoys. In this paper, two particular ice-island movement episodes near the north-west coast of Axel Heiberg Island are described: 6–16 May 1986 and 14–21 June 1986. Each movement episode is analyzed in terms of the forces acting on the ice island, including wind shear, water drag, water shear, Coriolis force, sea-surface tilt, and pack-ice force. Ice-island movement is generally preceded by an offshore surface wind, and a threshold wind speed of 6 m s°1 appears to be necessary to initiate ice-island motion. An angle of 50° between surface wind and ice-island movement direction is noted during one episode. The pack-ice force, which appears to be the dominant arresting factor of ice-island motion for these two episodes, varies from 100° to 180° to the left of the ice-island velocity direction, depending upon whether the ice island is accelerating or decelerating.


1970 ◽  
Vol 9 (57) ◽  
pp. 325-336 ◽  
Author(s):  
R.M. Koerner

Methods used in measuring the mass balance of the Devon Island ice cap are described. The use of dyes and melt trays is recommended in the superimposed-ice and firn zones of sub-polar glaciers. The north-west part of the ice cap was studied in most detail and has had a slightly negative net balance for the period 1961-66. An inverse relationship between mean net balance(bn)and elevation of the equilibrium line in the north-west part of the ice cap indicates that the mean net balance there would be zero with an equilibrium line at 920 m (±80 m) elevation. Accumulation on the ice cap is greatest in the south-east but the measurements suggest that the mean net balance there is similar to the mean net balance on the rest of the ice cap. It is concluded that the present accumulation pattern must have existed for several hundreds, and possibly thousands of years. A study of firn stratigraphy and of variations in the elevation of the firn and equilibrium lines indicates that between 1961 and 1966 only 1962 had a more negative mean net balance than the average value for the period 1934-60. During the same 26 year period the net balance at 1 787 m elevation has varied, but summer conditions do not appear to have changed significantly.


1970 ◽  
Vol 9 (57) ◽  
pp. 325-336 ◽  
Author(s):  
R.M. Koerner

Methods used in measuring the mass balance of the Devon Island ice cap are described. The use of dyes and melt trays is recommended in the superimposed-ice and firn zones of sub-polar glaciers. The north-west part of the ice cap was studied in most detail and has had a slightly negative net balance for the period 1961-66. An inverse relationship between mean net balance (bn) and elevation of the equilibrium line in the north-west part of the ice cap indicates that the mean net balance there would be zero with an equilibrium line at 920 m (±80 m) elevation. Accumulation on the ice cap is greatest in the south-east but the measurements suggest that the mean net balance there is similar to the mean net balance on the rest of the ice cap. It is concluded that the present accumulation pattern must have existed for several hundreds, and possibly thousands of years. A study of firn stratigraphy and of variations in the elevation of the firn and equilibrium lines indicates that between 1961 and 1966 only 1962 had a more negative mean net balance than the average value for the period 1934-60. During the same 26 year period the net balance at 1 787 m elevation has varied, but summer conditions do not appear to have changed significantly.


2005 ◽  
Vol 42 ◽  
pp. 417-423 ◽  
Author(s):  
Roy M. Koerner

AbstractMass-balance measurements began in the Canadian High Arctic in 1959. This paper considers the >40 years of measurements made since then, principally on two stagnant ice caps (on Meighen and Melville Islands), parts of two ice caps (the northeast section of Agassiz Ice Cap on northern Ellesmere Island and the northwest part of Devon Ice Cap on Devon Island) and two glaciers (White and Baby Glaciers, Axel Heiberg Island). The results show continuing negative balances. All the glaciers and ice caps except Meighen Ice Cap show weak but significant trends with time towards increasingly negative balances. Meighen Ice Cap may owe its lack of a trend to a cooling feedback from the increasingly open Arctic Ocean nearby (Johannessen and others, 1995). Feedback from this ocean has been shown to be the main cause of this ice cap’s growth and persistence at such a low elevation of <300 ma.s.l. (Alt, 1979). There may be a similar feedback in the lower elevations on Sverdrup Glacier which drains the northwest sector of Devon Ice Cap. The ablation rates there have not increased to the same extent as they have at higher elevations on the same glacier. Although evidence from the meteorological stations in the area shows that the eastern Arctic has either been cooling or has shown no change on an annual basis between 1950 and 1998, the same records show that the summers are showing a slight warming (Zhang and others, 2000). The summer warming, although slight (<1.0˚C over 48 years), is the cause of the weak trend to increasingly negative balances. This is because the mass-balance variability is dominated by the year-to-year variations in the summer balance; there is a very low variability, and no trend over time even within sections of the time series, of the winter balance of the various ice caps and glaciers. Repeat laser altimetry of ice caps by NASA for the period 1995–2000 over most of the ice caps in the Canadian Arctic Archipelago (Abdalati and others, 2004) has shown that the ablation zones are thinning while the accumulation zones show either a slight thickening or very little elevation change. Laser altimetry is revealing similar patterns of change in Greenland (Krabill and others, 2000) and Svalbard (Bamber and others, 2004). The thickening of the accumulation zones in the Canadian case may be due to higher accumulation rates, not just between the two years of laser measurements, but over a period substantially longer than the >40 years of ground-based measurements.


1989 ◽  
Vol 12 ◽  
pp. 152-156
Author(s):  
W.M. Sackinger ◽  
M.O. Jeffries ◽  
H. Tippens ◽  
F. Li ◽  
M. Lu

The largest ice island presently known to exist in the Arctic Ocean has a mass of about 700 × 106 tonnes, an area of about 26 km2, and a mean thickness of 42.5 m. Known as Hobson’s Ice Island, this large ice feature has been tracked almost continuously since August 1983 with a succession of Argos buoys. In this paper, two particular ice-island movement episodes near the north-west coast of Axel Heiberg Island are described: 6–16 May 1986 and 14–21 June 1986. Each movement episode is analyzed in terms of the forces acting on the ice island, including wind shear, water drag, water shear, Coriolis force, sea-surface tilt, and pack-ice force. Ice-island movement is generally preceded by an offshore surface wind, and a threshold wind speed of 6 m s°1 appears to be necessary to initiate ice-island motion. An angle of 50° between surface wind and ice-island movement direction is noted during one episode. The pack-ice force, which appears to be the dominant arresting factor of ice-island motion for these two episodes, varies from 100° to 180° to the left of the ice-island velocity direction, depending upon whether the ice island is accelerating or decelerating.


1987 ◽  
Vol 33 (113) ◽  
pp. 68-71 ◽  
Author(s):  
D. J. A. Evans ◽  
T. G. Fisher

AbstractEvidence of a recent (1985) ice-cliff avalanche from an outlet lobe of a small plateau ice cap on north-west Ellesmere Island is discussed. Former avalanche events are evidenced by debris lying outside the 1985 avalanche material. Periodic activity seems to be linked to the build-up of melt water in the crevasses of the outlet lobe during the melt season. The exact magnitude and frequency of events are unknown. Some implications to geomorphology and the sedimentology of sub-polar glaciers are discussed.


1987 ◽  
Vol 33 (113) ◽  
pp. 68-71
Author(s):  
D. J. A. Evans ◽  
T. G. Fisher

AbstractEvidence of a recent (1985) ice-cliff avalanche from an outlet lobe of a small plateau ice cap on north-west Ellesmere Island is discussed. Former avalanche events are evidenced by debris lying outside the 1985 avalanche material. Periodic activity seems to be linked to the build-up of melt water in the crevasses of the outlet lobe during the melt season. The exact magnitude and frequency of events are unknown. Some implications to geomorphology and the sedimentology of sub-polar glaciers are discussed.


1993 ◽  
Vol 130 (3) ◽  
pp. 301-318 ◽  
Author(s):  
Matthew R. Bennett ◽  
Geoffrey S. Boulton

AbstractThe aim of this paper is to demonstrate that much of the ‘hummocky moraine’ present within the northern part of the LochLomond Readvance ice cap formerly situated in the North West Scottish Highlands may be interpreted as suites of ice-front moraines deposited during active decay. These landforms can be used to reconstruct ice cap decay, whichleads to important insights into the shrinking form of the ice cap and associated environmental conditions. Evidence has been collected from 10803 airphotographs and from detailed field survey. It is presented at three spatial scales.


ARCTIC ◽  
2016 ◽  
Vol 69 (5) ◽  
pp. 1 ◽  
Author(s):  
Bjarne Grønnow

The settlement and subsistence patterns of the Inughuit of the Avanersuaq (Thule area) are described and analyzed for the years 1910 to 1953, when Knud Rasmussen’s trading station at Dundas was active. Inughuit subsistence was based on the rich biotic resources of the North Water polynya between Ellesmere Island and Greenland, but the analysis shows that trade, primarily with fox furs at the Thule Station, also played a major role in shaping the settlement pattern of the period. During the Thule Station Period, the named winter settlements amounted to c. 40 sites; however, only 10–15 of them were settled at any given time. The Inughuit settlement close to the station, Uummannaq, soon became the largest site in the area. The sources enable us to follow changes of residence of some hunting families over four decades. By moving their winter sites every second or third year, the families gained primary knowledge of the topography and seasonal variation of the hunting grounds in the entire Thule district during their active years. In the same way, they connected with diverse family networks through the years. Tracing the sledge routes that connected the sites over great distances reveals how decisive proximity to main and escape routes over the Ice Cap was for site location. Dog sledge technology, and thus capacity to transport people, gear, and stored food, boomed during the Thule Station Period with the wealth created from trade and access to raw materials. Mapping the main hunting grounds on the sea ice and modeling the hunters’ annual range of possibilities for accessing different game—mainly walrus, ringed seal, narwhal, and sea birds (plus some caribou)—showed that ringed seal formed the bread and butter of the subsistence economy. However, bulk resources, gained in particular from intensive spring walrus hunts at a few hot spots, as well as carefully timed consumption and sharing of the stored meat and blubber, were keys to life at the North Water polynya. Temporary settlement at the trading stations in the area—a couple of winters at a time—was also part of the risk management strategy of the Inughuit.


Sign in / Sign up

Export Citation Format

Share Document