scholarly journals Mass balance of glaciers in the Queen Elizabeth Islands, Nunavut, Canada

2005 ◽  
Vol 42 ◽  
pp. 417-423 ◽  
Author(s):  
Roy M. Koerner

AbstractMass-balance measurements began in the Canadian High Arctic in 1959. This paper considers the >40 years of measurements made since then, principally on two stagnant ice caps (on Meighen and Melville Islands), parts of two ice caps (the northeast section of Agassiz Ice Cap on northern Ellesmere Island and the northwest part of Devon Ice Cap on Devon Island) and two glaciers (White and Baby Glaciers, Axel Heiberg Island). The results show continuing negative balances. All the glaciers and ice caps except Meighen Ice Cap show weak but significant trends with time towards increasingly negative balances. Meighen Ice Cap may owe its lack of a trend to a cooling feedback from the increasingly open Arctic Ocean nearby (Johannessen and others, 1995). Feedback from this ocean has been shown to be the main cause of this ice cap’s growth and persistence at such a low elevation of <300 ma.s.l. (Alt, 1979). There may be a similar feedback in the lower elevations on Sverdrup Glacier which drains the northwest sector of Devon Ice Cap. The ablation rates there have not increased to the same extent as they have at higher elevations on the same glacier. Although evidence from the meteorological stations in the area shows that the eastern Arctic has either been cooling or has shown no change on an annual basis between 1950 and 1998, the same records show that the summers are showing a slight warming (Zhang and others, 2000). The summer warming, although slight (<1.0˚C over 48 years), is the cause of the weak trend to increasingly negative balances. This is because the mass-balance variability is dominated by the year-to-year variations in the summer balance; there is a very low variability, and no trend over time even within sections of the time series, of the winter balance of the various ice caps and glaciers. Repeat laser altimetry of ice caps by NASA for the period 1995–2000 over most of the ice caps in the Canadian Arctic Archipelago (Abdalati and others, 2004) has shown that the ablation zones are thinning while the accumulation zones show either a slight thickening or very little elevation change. Laser altimetry is revealing similar patterns of change in Greenland (Krabill and others, 2000) and Svalbard (Bamber and others, 2004). The thickening of the accumulation zones in the Canadian case may be due to higher accumulation rates, not just between the two years of laser measurements, but over a period substantially longer than the >40 years of ground-based measurements.

1975 ◽  
Vol 14 (71) ◽  
pp. 267-274 ◽  
Author(s):  
R. S. Bradley

Equilibrium-line altitudes on the White Glacier, Axel Heiberg Island, and the north-west sector of the Devon Ice Cap are shown to be closely related to mean July freezing-level heights at nearby upper-air weather stations. An inverse relationship between July freezing-level heights and mass balance on the Devon Ice Cap is also shown. Reasons for such correlations are suggested and some limitations of the relationship are outlined. Recent lowering of the freezing level in July is discussed in relation to the theoretical “steady-state” equilibrium-line altitudes in the Canadian high Arctic. It is suggested that positive mass-balance years have predominated over a large part of northern Ellesmere Island and north-central Axel Heiberg Island since 1963, and some glaciological evidence supporting this hypothesis is given.


1975 ◽  
Vol 14 (71) ◽  
pp. 267-274 ◽  
Author(s):  
R. S. Bradley

AbstractEquilibrium-line altitudes on the White Glacier, Axel Heiberg Island, and the north-west sector of the Devon Ice Cap are shown to be closely related to mean July freezing-level heights at nearby upper-air weather stations. An inverse relationship between July freezing-level heights and mass balance on the Devon Ice Cap is also shown. Reasons for such correlations are suggested and some limitations of the relationship are outlined. Recent lowering of the freezing level in July is discussed in relation to the theoretical “steady-state” equilibrium-line altitudes in the Canadian high Arctic. It is suggested that positive mass-balance years have predominated over a large part of northern Ellesmere Island and north-central Axel Heiberg Island since 1963, and some glaciological evidence supporting this hypothesis is given.


2006 ◽  
Vol 38 (1) ◽  
pp. 1-12 ◽  
Author(s):  
R. P. Bassford ◽  
M. J. Siegert ◽  
J. A. Dowdeswell ◽  
J. Oerlemans ◽  
A. F. Glazovsky ◽  
...  

2017 ◽  
Author(s):  
Heidi M. Pickard ◽  
Alison S. Criscitiello ◽  
Christine Spencer ◽  
Martin J. Sharp ◽  
Derek C. G. Muir ◽  
...  

Abstract. Perfluoroalkyl acids (PFAAs) are persistent, bioaccumulative compounds found ubiquitously within the environment. They can be formed from the atmospheric oxidation of volatile precursor compounds and undergo long-range transport through the atmosphere and ocean to remote locations. Ice caps preserve a temporal record of PFAA deposition making them useful in studying the atmospheric trends in LRT of PFAAs as well as understanding major pollutant sources and production changes over time. A 15 m ice core representing 38 years of deposition (1977–2015) was collected from the Devon Ice Cap in Nunavut, providing us with the first multi-decadal temporal ice record in PFAA deposition to the Arctic. Ice core samples were concentrated using solid phase extraction and analyzed by liquid and ion chromatography methods. Both perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) were detected in the samples, with fluxes ranging from


2012 ◽  
Vol 53 (60) ◽  
pp. 193-201 ◽  
Author(s):  
Geir Moholdt ◽  
Torborg Heid ◽  
Toby Benham ◽  
Julian A. Dowdeswell

AbstractIce sheets and smaller ice caps appear to behave in dynamically similar ways; both contain slow-moving ice that is probably frozen to the bed, interspersed with fast-flowing ice streams and outlet glaciers that terminate into the ocean. Academy of Sciences Ice Cap (Akademii Nauk ice cap; 5570 km2), Severnaya Zemlya, Russian High Arctic, provides a clear example of this varied flow regime. We have combined satellite measurements of elevation change and surface velocity to show that variable ice-stream dynamics dominate the mass balance of the ice cap. Since 1988, the ice cap has lost 58±16 Gt of ice, corresponding to ~3% of its mass or 0.16mm of sea-level rise. The climatic mass balance is estimated to be close to zero, and terminus positions have remained stable to within a few kilometers, implying that almost all mass loss has occurred through iceberg calving. The ice-cap calving rate increased from ~0.6 Gt a–1 in 1995 to ~3.0 Gt a–1 in 2000–02, but has recently decreased to ~1.4 Gt a–1 due to a likely slowdown of the largest ice stream. Such highly variable calving rates have not been reported before from High Arctic ice caps, suggesting that these ice masses may be less stable than previously thought.


2016 ◽  
Vol 63 (237) ◽  
pp. 79-87 ◽  
Author(s):  
CHRISTOPH MAYER ◽  
JULIA JAENICKE ◽  
ASTRID LAMBRECHT ◽  
LUDWIG BRAUN ◽  
CHRISTOF VÖLKSEN ◽  
...  

ABSTRACTMost Icelandic glaciers show high-accumulation rates during winter and strong surface melting during summer. Although it is difficult to establish and maintain mass-balance programs on these glaciers, mass-balance series do exist for several of the ice caps (Björnsson and others, 2013). We make use of the frequent volcanic eruptions in Iceland, which cause widespread internal tephra layers in the ice caps, to reconstruct the surface mass balance (SMB) in the ablation zone. This method requires information about surface geometry and ice velocity, derived from remote-sensing information. In addition, the emergence angle of the tephra layer needs to be known. As a proof-of-concept, we utilize a prominent tephra layer of the Mýrdalsjökull Ice Cap to infer local SMB estimates in the ablation area back to 1988. Using tephra-layer outcrop locations across the glacier at different points in time it is possible to determine local mass changes (loss and redistribution) for a large part of the ablation zone, without the use of historic elevation models, which often are not available.


2015 ◽  
Vol 9 (3) ◽  
pp. 2821-2865 ◽  
Author(s):  
L. Gray ◽  
D. Burgess ◽  
L. Copland ◽  
M. N. Demuth ◽  
T. Dunse ◽  
...  

Abstract. We show that the CryoSat-2 radar altimeter can provide useful estimates of surface elevation change on a variety of Arctic ice caps, on both monthly and yearly time scales. Changing conditions, however, can lead to a varying bias between the elevation estimated from the radar altimeter and the physical surface due to changes in the contribution of subsurface to surface backscatter. Under melting conditions the radar returns are predominantly from the surface so that if surface melt is extensive across the ice cap estimates of summer elevation loss can be made with the frequent coverage provided by CryoSat-2. For example, the average summer elevation decreases on the Barnes Ice Cap, Baffin Island, Canada were 2.05 ± 0.36 m (2011), 2.55 ± 0.32 m (2012), 1.38 ± 0.40 m (2013) and 1.44 ± 0.37 m (2014), losses which were not balanced by the winter snow accumulation. As winter-to-winter conditions were similar, the net elevation losses were 1.0 ± 0.2 m (winter 2010/2011 to winter 2011/2012), 1.39 ± 0.2 m (2011/2012 to 2012/2013) and 0.36 ± 0.2 m (2012/2013 to 2013/2014); for a total surface elevation loss of 2.75 ± 0.2 m over this 3 year period. In contrast, the uncertainty in height change results from Devon Ice Cap, Canada, and Austfonna, Svalbard, can be up to twice as large because of the presence of firn and the possibility of a varying bias between the true surface and the detected elevation due to changing year-to-year conditions. Nevertheless, the surface elevation change estimates from CryoSat for both ice caps are consistent with field and meteorological measurements. For example, the average 3 year elevation difference for footprints within 100 m of a repeated surface GPS track on Austfonna differed from the GPS change by 0.18 m.


Sign in / Sign up

Export Citation Format

Share Document