The Life History of Gastrodiscoides hominis (Lewis and McConnel, 1876) Leiper, 1913– the Amphistome Parasite of Man and Pig

1972 ◽  
Vol 46 (1) ◽  
pp. 35-46 ◽  
Author(s):  
S. C. Dutt ◽  
H. D. Srivastava

The life cycle of Gastrodiscoidcs hominis has been described using Helicorbis coenosus as the experimental intermediate host and the pig as the definitive host.The morphology of the miracidium, redia and metacercaria has been described. Data have been furnished on the infection and longevity, of and production of cercariae by the snail host, and the growth and development of the adult-fluke in the definitive host.

2013 ◽  
Vol 88 (2) ◽  
pp. 230-236 ◽  
Author(s):  
R. Brinesh ◽  
K.P. Janardanan

AbstractThe life-cycle stages of Pleurogenoides malampuzhensis sp. nov. infecting the Indian bullfrog Hoplobatrachus tigerinus (Daudin) and the skipper frog Euphlyctiscyanophlyctis (Schneider) occurring in irrigation canals and paddy fields in Malampuzha, which forms part of the district of Palakkad, Kerala, are described. The species is described, its systematic position discussed and compared with the related species, P. gastroporus (Luhe, 1901) and P. orientalis (Srivastava, 1934). The life-cycle stages, from cercaria to egg-producing adult, were successfully established in the laboratory. Virgulate xiphidiocercariae emerged from the snail Digoniostoma pulchella (Benson). Metacercariae are found in muscle tissues of dragonfly nymphs and become infective to the frogs within 22 days. The pre-patent period is 20 days. Growth and development of both metacercariae and adults are described.


1966 ◽  
Vol 40 (1-2) ◽  
pp. 11-32 ◽  
Author(s):  
J. B. E. Awachie

The details of the post-embryonic development of Echinorhynchus truttae in the intermediate host, Gammarus pulex, and the final host, Salmo truttae, are described.The cystacanths of this species are sexually mature and are formed about 82 days after infection at room temperature, ca. 17°C.Copulation takes place in the definitive host soon after the worms enter the pyloric region of the intestine. About 10 weeks after infection, mature eggs are passed out with the faeces of fish.


Parasitology ◽  
2016 ◽  
Vol 144 (4) ◽  
pp. 464-474 ◽  
Author(s):  
C. LAGRUE ◽  
R. RINNEVALLI ◽  
R. POULIN

SUMMARYA number of parasites with complex life cycles can abbreviate their life cycles to increase the likelihood of reproducing. For example, some trematodes can facultatively skip the definitive host and produce viable eggs while still inside their intermediate host. The resulting shorter life cycle is clearly advantageous when transmission probabilities to the definitive hosts are low. Coitocaecum parvum can mature precociously (progenesis), and produce eggs by selfing inside its amphipod second intermediate host. Environmental factors such as definitive host density and water temperature influence the life-history strategy adopted by C. parvum in their crustacean host. However, it is also possible that information about transmission opportunities gathered earlier in the life cycle (i.e. by cercariae-producing sporocysts in the first intermediate host) could have priming effects on the adoption of one or the other life strategy. Here we document the effects of environmental parameters (host chemical cues and temperature) on cercarial production within snail hosts and parasite life-history strategy in the amphipod host. We found that environmental cues perceived early in life have limited priming effects on life-history strategies later in life and probably account for only a small part of the variation among conspecific parasites. External cues gathered at the metacercarial stage seem to largely override potential effects of the environmental conditions experienced by early stages of the parasite.


Parasitology ◽  
2008 ◽  
Vol 135 (10) ◽  
pp. 1243-1251 ◽  
Author(s):  
C. LAGRUE ◽  
R. POULIN

SUMMARYParasites with complex life cycles have developed numerous and very diverse adaptations to increase the likelihood of completing this cycle. For example, some parasites can abbreviate their life cycles by skipping the definitive host and reproducing inside their intermediate host. The resulting shorter life cycle is clearly advantageous when definitive hosts are absent or rare. In species where life-cycle abbreviation is facultative, this strategy should be adopted in response to seasonally variable environmental conditions. The hermaphroditic trematode Coitocaecum parvum is able to mature precociously (progenesis), and produce eggs by selfing while still inside its amphipod second intermediate host. Several environmental factors such as fish definitive host density and water temperature are known to influence the life-history strategy adopted by laboratory raised C. parvum. Here we document the seasonal variation of environmental parameters and its association with the proportion of progenetic individuals in a parasite population in its natural environment. We found obvious seasonal patterns in both water temperature and C. parvum host densities. However, despite being temporally variable, the proportion of progenetic C. parvum individuals was not correlated with any single parameter. The results show that C. parvum life-history strategy is not as flexible as previously thought. It is possible that the parasite's natural environment contains so many layers of heterogeneity that C. parvum does not possess the ability to adjust its life-history strategy to accurately match the current conditions.


Parasitology ◽  
1956 ◽  
Vol 46 (3-4) ◽  
pp. 443-469 ◽  
Author(s):  
Abbas T. Najim

1. The life cycle of Gigantobilharzia huronensis Najim, 1950, was determined experimentally. The snail, Physa gyrina (Say), served as the intermediate host. The natural definitive hosts were goldfinches (Spinus tristis tristis) and the cardinals (Richmondena cardinalis). Chicks and canaries served as susceptible hosts in the laboratory2. The shortest time recorded for the hatching of eggs in water is about 20 min. Cercariae were liberated from the snail as early as 24 days after exposure. Eggs were found in the faeces of the definitive host 31 days after the first exposure to the cercariae.3. Adult worms are elongate and filiform. Females are longer than males, and in both sexes the oral and ventral suckers are absent. The cuticle has no spines. A short gynaecophoric canal is present. Up to 300 testes are present in the male and the cirrus is spiny. Laurer's canal is present and vitelline follicles fill most of the body of the female. Eggs are spherical to very broadly ovoid in shape and averaged 93µ in length by 88µ in width. The uterus contains from one to several eggs at a time, and the genital pore is located shortly posterior to the mouth opening.4. The miracidium has a peculiar wide gap between the second and third rows of epidermal plates. The body covering consists of twenty-two epidermal plates arranged in four rows of 6:9:4:3. The mother sporocyst has an elongate, sac-like body. A birth pore is present in the mature mother sporocysts. The daughter sporocyst also has an elongate body, but the anterior end is covered with spines. A birth pore is present in the mature daughter sporocysts.5. The cercaria is an apharyngeal, furcocercous, brevifurcate, distome with pigmented eyespots; the body averaging 240µ in length by 72·5µ in width; the tail stem averaging 268·5µ in length by 30µ, in width; the furca averaging 146·8µ in length by 15µ in width. The furcae have fin folds. The body and tail are covered with spines. There are five pairs of penetration glands and an oral gland. The excretory system is usually 2[(2) + (2+1)]. The cercaria attaches to the surface film of the water with the body parallel to it and the tail hanging downward at different angles. The cercaria is a dermatitis producer in human skin.


1960 ◽  
Vol 38 (2) ◽  
pp. 331-344 ◽  
Author(s):  
B. J. Myers

Phocanema (synonyms: Porrocaecum, Terranova) decipiens is described in detail and its probable life cycle outlined. Eggs deposited in salt water develop and hatch in 7 to 14 days at between 10 °C and 24 °C, even after previous freezing. Temperatures over 24 °C are lethal. Larvae fed to a large variety of invertebrates passed quickly through their intestines still alive; fed to fish, they disappeared within 24 hours but in one case a larva was found ensheathed in the intestine. No larvae were found in 'wild' invertebrates although many were infected with free-living nematodes. It is concluded that, while numerous invertebrates may act as 'transport' hosts for the larva to a fish, none acts as a true intermediate host. While larvae infective to seals occur commonly in the muscles of cod, a large variety of other fish are also infected and are a more probable source of infection. Development to maturity in the seal takes approximately three weeks, and it is probable that the main source of the infection in the Gulf of St, Lawrence is the harp seal, although harbor and grey seals also contribute to it.


1944 ◽  
Vol 22d (1) ◽  
pp. 6-16 ◽  
Author(s):  
Thomas W. M. Cameron

A trematode, widely distributed in Canada, and occurring in man and other fish-eating mammals, is described and its taxonomy discussed. Its life cycle has been worked out and it is shown to involve a snail, Amnicola limosa porata as first intermediate host and a fish, the common sucker (Catostomus commersonii) as the second intermediate host. The larval stages are described.


Author(s):  
M. B. Jones ◽  
G. Smaldon

INTRODUCTIONAdults of the isopod genus Holophryxus (Dajidae) occur as ectoparasites on natant decapod crustaceans, but little is known of the ecology and life-history of most species. Species of Holophryxus are thought to have a typical dajid life cycle involving an intermediate host (copepod), a definitive host (prawn) and three larval stages (epicaridium, microniscus, cryptoniscus), and the one species for which details are available fits this pattern (Coyle & Mueller, 1981). The final host is infected by the cryptoniscus, a stage superficially resembling a cirolanid isopod, and the first cryptoniscus to settle loses its isopod-like appearance and develops through a juvenile stage into a rather inflated, highly modified female (Coyle & Mueller, 1981). Any subsequent settler becomes a male, retains the small cryptoniscus body form and lives within the marsupium of the female.


1978 ◽  
Vol 52 (3) ◽  
pp. 251-259 ◽  
Author(s):  
R. Madhavi

ABSTRACTThe life cycle of Genarchopsis goppo a hemiurid trematode found in the stomach of Channa punctata has been worked out in detail. The egg contains a fully developed miracidium at the time of liberation. The miracidium contains a ciliated covering, a long apical gland and a crown of spines at the anterior end. The snail Amnicola travancorica acts as the first intermediate host inside which the miracidium passes through sporocyst and redial generations. The cercaria is of cystophorous type and is identical to Cercariae Indicae Sewell XXXV. Metacercaria occurs in the ostracods Stenocypris malcolmsoni and Eucyoris capensis. The fish Aplocheilus panchax serves as the paratenic host. The entire developmental cycle from egg to egg producing adult takes 3 months.


Parasitology ◽  
1932 ◽  
Vol 24 (2) ◽  
pp. 210-224 ◽  
Author(s):  
Cecil A. Hoare

This paper contains a report on a collection of parasitic protozoa from the blood of some vertebrate animals of Uganda.Seven new species and a number of parasites recorded for new hosts are described. New observations on some known parasites are also recorded.An account is given of the life history of the crocodile haemogregarine. It is shown that the schizogony of Hepatozoon pettiti (nomen novum for Haemogregarina pettiti) occurs in the liver of the crocodile, while the sporogony takes place in Glossina palpalis, its intermediate host.A list of all the blood parasites found, together with their hosts, is given.


Sign in / Sign up

Export Citation Format

Share Document