Smelling the future: subtle life-history adjustments in response to environmental conditions and perceived transmission opportunities in a trematode

Parasitology ◽  
2016 ◽  
Vol 144 (4) ◽  
pp. 464-474 ◽  
Author(s):  
C. LAGRUE ◽  
R. RINNEVALLI ◽  
R. POULIN

SUMMARYA number of parasites with complex life cycles can abbreviate their life cycles to increase the likelihood of reproducing. For example, some trematodes can facultatively skip the definitive host and produce viable eggs while still inside their intermediate host. The resulting shorter life cycle is clearly advantageous when transmission probabilities to the definitive hosts are low. Coitocaecum parvum can mature precociously (progenesis), and produce eggs by selfing inside its amphipod second intermediate host. Environmental factors such as definitive host density and water temperature influence the life-history strategy adopted by C. parvum in their crustacean host. However, it is also possible that information about transmission opportunities gathered earlier in the life cycle (i.e. by cercariae-producing sporocysts in the first intermediate host) could have priming effects on the adoption of one or the other life strategy. Here we document the effects of environmental parameters (host chemical cues and temperature) on cercarial production within snail hosts and parasite life-history strategy in the amphipod host. We found that environmental cues perceived early in life have limited priming effects on life-history strategies later in life and probably account for only a small part of the variation among conspecific parasites. External cues gathered at the metacercarial stage seem to largely override potential effects of the environmental conditions experienced by early stages of the parasite.

Parasitology ◽  
2008 ◽  
Vol 135 (10) ◽  
pp. 1243-1251 ◽  
Author(s):  
C. LAGRUE ◽  
R. POULIN

SUMMARYParasites with complex life cycles have developed numerous and very diverse adaptations to increase the likelihood of completing this cycle. For example, some parasites can abbreviate their life cycles by skipping the definitive host and reproducing inside their intermediate host. The resulting shorter life cycle is clearly advantageous when definitive hosts are absent or rare. In species where life-cycle abbreviation is facultative, this strategy should be adopted in response to seasonally variable environmental conditions. The hermaphroditic trematode Coitocaecum parvum is able to mature precociously (progenesis), and produce eggs by selfing while still inside its amphipod second intermediate host. Several environmental factors such as fish definitive host density and water temperature are known to influence the life-history strategy adopted by laboratory raised C. parvum. Here we document the seasonal variation of environmental parameters and its association with the proportion of progenetic individuals in a parasite population in its natural environment. We found obvious seasonal patterns in both water temperature and C. parvum host densities. However, despite being temporally variable, the proportion of progenetic C. parvum individuals was not correlated with any single parameter. The results show that C. parvum life-history strategy is not as flexible as previously thought. It is possible that the parasite's natural environment contains so many layers of heterogeneity that C. parvum does not possess the ability to adjust its life-history strategy to accurately match the current conditions.


Parasitology ◽  
1994 ◽  
Vol 109 (5) ◽  
pp. 583-589 ◽  
Author(s):  
J. P. Webster

Using both correlational and experimental evidence, the relationship between parasite load and host activity was assessed in brown rats, Rattus norvegicus. Two hypotheses were tested – (1) that parasites with indirect life-cycles, involving transmission between a prey and its predator, will alter the activity of the intermediate host so as to increase its susceptibility to predation by the definitive host and (2) that activity levels in parasitized rats would be increased rather than decreased. Four groups of rats (n = 140) were examined. One group (n = 50) were wild brown rats trapped from 3 UK farmsteads, with naturally occurring parasites. The others were purpose-bred wild/laboratory hybrid rats with experimentally induced parasitic infections of either (n = 15) adult-acquired or (n = 15) congenitally-acquired Toxoplasma gondii (an indirect life-cycle parasite), or (n = 15) Syphacia muris (a direct life-cycle parasite). Uninfected hybrid rats (n = 45), matched for sex, age and weight, served as controls. Rats were housed individually in outdoor cages, and their activities were recorded on video-tapes for 6 non-consecutive 10 h nights. Exercise wheels were also available for the hybrid rats. Out of 6 parasite species detected in the wild rats, T. gondii was the only one which required predation by a definitive host to complete its life-cycle, and was also the only parasite to be associated with higher activity levels in infected than uninfected rats. Hybrid rats infected with T. gondii were also more active than those uninfected, whereas there were no differences in activity levels between S. muris infected and uninfected rats. This study shows that the indirect life-cycle parasite T. gondii can influence the activity of its intermediate host the rat. I suggest that this may facilitate its transmission to the cat definitive host.


1972 ◽  
Vol 46 (1) ◽  
pp. 35-46 ◽  
Author(s):  
S. C. Dutt ◽  
H. D. Srivastava

The life cycle of Gastrodiscoidcs hominis has been described using Helicorbis coenosus as the experimental intermediate host and the pig as the definitive host.The morphology of the miracidium, redia and metacercaria has been described. Data have been furnished on the infection and longevity, of and production of cercariae by the snail host, and the growth and development of the adult-fluke in the definitive host.


1957 ◽  
Vol 31 (4) ◽  
pp. 203-224 ◽  
Author(s):  
Roy C. Anderson

The evolution of the life cycles of the members of the family Dipetalonematiidae Wehr, 1935 (Filarioidea) is considered in the light of existing knowledge of spirurid nematodes. The hypothesis that the life cycles of the dipetalonematids originated from life cycles similar to those of Draschia megastoma, Habronema muscae and H. microstoma is considered to be incorrect. Alternatively, it is pointed out that in the primitive subfamily Thelaziinae Baylis and Daubney, 1926 there are forms with typical spiruroid life cycles (Rhabdochona ovifilamenta), forms with life cycles approaching those of the dipetalonematids (Thelazia spp.), and forms with life cycles intermediate between these two (Oxyspirura spp.). It is suggested that intestinal species similar to Rhabdochona gave rise to the more specialized spiruroids and forms that left the gut (Oxyspirura, Thelazia) gave rise to the dipetalonematids.The dipetalonematids are believed to have originated from nematodes resembling the species of Thelazia and having life cycles like those of T. rhodesii, T. skrjabini and T. gulosa. Some of these worms established themselves in subcutaneous tissues. Like Parafilaria multipapillosa, they released their eggs through a break in the skin of the definitive host, thus causing a skin lesion that attracted various haematophagous arthropods which finally became involved as intermediate hosts in the life cycle. Certain species like the members of Parafilaria and Stephanofilaria (?) came to rely upon intermediate hosts that were unable to break the skin of the definitive host (Musca) and cutaneous lesions became permanent features of their life cycles. Other species became dependent upon intermediate hosts that could puncture the skin (mosquitoes, simuliids etc.) and skin lesions became unnecessary to the life cycle. The larvae of these worms then began to spread into the tissues of the skin, as found in Stephanofilaria, Onchocerca, and some species of Dipetalonema, and the infective larvae developed the ability to penetrate into the wound made by the intermediate host and perhaps, in some cases, the intact skin. Ultimately the larvae of some species habitually entered, or were deposited into, the blood stream and the adult worms were then free to colonize the vertebrate body as their larvae would then be available to the intermediate host no matter where the latter fed on the body of the definitive host; this group of worms gave rise to the many members of the family Dipetalonematidae.The family Filariidae Claus, 1883 is briefly reviewed in the light of the above hypothesis. It is pointed out that many species, e.g. Diplotriaeninae Skrjabin, 1916, live in the air sacs of reptiles and birds and probably have life cycles similar to that of Diplotriaenoides translucidus, i.e. the eggs pass through the lungs, up the trachea and out in the faeces. It is thought that these forms may represent a separate line of evolution from that which gave rise to the Dipetalonematidae. Certain genera (Lissonema, Aprocta), occurring in the orbits of birds, probably have life cycles like Thelazia or Oxyspirura. Many other genera occurring in superficial muscles and subcutaneous tissues (Squamofilaria, Ularofilaria, Tetracheilonema, Pelecitus, Monopetalonema) may release their eggs through some sort of skin lesion. Studies on these forms are urgently needed as the details of their life cycles may shed fresh light on the origins of the more specialized filarioids.


All ecosystems require constituent species to survive against a backcloth of biotic and abiotic scenery. How this scenery shapes the life-history strategies of the players and how they in turn shape the scenery are important themes of the play of life. Species surviving in temperate and Arctic shelf seas do so against a scenery dominated by seasonal changes in the size-spectrum of other players. Successful survival in such an environment requires species to ride the big wave of annual productivity as it rolls through the extended size spectrum from phytoplankton to large fish. This wave flattens and broadens as it moves towards higher sizes. We speculate that in a seasonal shelf seas environment the wave shape is such that the Sheldon-Sutcliffe spectrum of equal biomass per log size interval is approximately true as an annual average although it may not be true at any particular moment in the year. Such spectra are structured by biomass being moved up the size spectrum mainly by predation processes, with growth of individuals being a second order process. However, the problem for an individual is to grow up through a size spectrum from its size at birth to its size at reproduction. Hence species need to find survival paths through the fluctuating scenery. This scenery is composed of the biomass of the prey, that of animals of a similar size, and larger predators. The paths followed dictate the life-history strategies of the species. This central problem for sea dwellers in temperate and Arctic shelf seas generates a broad similarity in the choice of life-history strategy for many key players over quite wide geographic areas of the globe. In these seas, strategies of high fecundity, high mortality and high growth rate are particularly common while strategies of low fecundity and parental care are rare for much of the size range. These seas also seem to favour longer trophic chains than terrestrial systems and either several generations per year or multiannual life cycles rather than annual cycles.


2010 ◽  
Vol 42 (3) ◽  
pp. 339-346 ◽  
Author(s):  
Andreas ENGELEN ◽  
Peter CONVEY ◽  
Sieglinde OTT

AbstractCoal Nunatak is an ice-free inland nunatak located on southern Alexander Island, adjacent to the west coast of the Antarctic Peninsula. Situated close to the Antarctic continent, it is characterized by harsh environmental conditions. Macroscopic colonization is restricted to micro-niches offering suitable conditions for a small number of lichens and mosses. The extreme environmental conditions place particular pressures on colonizers. Lepraria borealis is the dominant crustose lichen species present on Coal Nunatak, and shows distinctive features in its life history strategy, in particular expressing unusually low selectivity of the mycobiont towards potential photobionts. To assess selectivity, we measured algal DNA sequence polymorphism in a region of 480–660 bp of the nuclear internal transcribed spacer region of ribosomal DNA. We identified three different photobiont species, belonging to two different genera. We interpret this strategy as being advantageous in facilitating the colonization and community dominance of L. borealis under the isolation and extreme environmental conditions of Coal Nunatak.


1999 ◽  
Vol 56 (12) ◽  
pp. 2397-2403 ◽  
Author(s):  
Sveinn K Valdimarsson ◽  
Neil B Metcalfe

Traditionally, behavioural studies on juvenile Atlantic salmon, Salmo salar, have been conducted during the day in summer. It is known that Atlantic salmon become nocturnal in winter, but very little is known about their behaviour at that time. Therefore, observations in a seminatural stream were carried out during the day and night, from February to June, comparing diel and seasonal differences in behaviour between fish adopting alternative life history strategies. The results showed a general trend for more activity in spring than in winter, and the fish were found to be foraging at surprisingly low light levels. There were differences in relative feeding rate between the life history strategies; the early migrant fish foraged mostly during the day whereas the delayed migrant fish did more foraging at night. There is some evidence that the early migrant fish made fewer feeding attempts over the winter, which is surprising, since they grow faster over that period. This suggests differences in foraging efficiency, which could contribute to the separation into these two life history strategies.


Author(s):  
Marco Del Giudice

The chapter introduces the basics of life history theory, the concept of life history strategy, and the fast–slow continuum of variation. After reviewing applications to animal behavior and physiology, the chapter reviews current theory and evidence on individual differences in humans as manifestations of alternative life history strategies. The chapter first presents a “basic model” of human life history–related traits, then advances an “extended model” that identifies multiple cognitive-behavioral profiles within fast and slow strategies. Specifically, it is proposed that slow strategies comprise prosocial/caregiving and skilled/provisioning profiles, whereas fast strategies comprise antisocial/exploitative and seductive/creative profiles. The chapter also reviews potential neurobiological markers of life history variation and considers key methodological issues in this area.


2020 ◽  
Vol 117 (30) ◽  
pp. 18119-18126 ◽  
Author(s):  
Line S. Cordes ◽  
Daniel T. Blumstein ◽  
Kenneth B. Armitage ◽  
Paul J. CaraDonna ◽  
Dylan Z. Childs ◽  
...  

Seasonal environmental conditions shape the behavior and life history of virtually all organisms. Climate change is modifying these seasonal environmental conditions, which threatens to disrupt population dynamics. It is conceivable that climatic changes may be beneficial in one season but result in detrimental conditions in another because life-history strategies vary between these time periods. We analyzed the temporal trends in seasonal survival of yellow-bellied marmots (Marmota flaviventer) and explored the environmental drivers using a 40-y dataset from the Colorado Rocky Mountains (USA). Trends in survival revealed divergent seasonal patterns, which were similar across age-classes. Marmot survival declined during winter but generally increased during summer. Interestingly, different environmental factors appeared to drive survival trends across age-classes. Winter survival was largely driven by conditions during the preceding summer and the effect of continued climate change was likely to be mainly negative, whereas the likely outcome of continued climate change on summer survival was generally positive. This study illustrates that seasonal demographic responses need disentangling to accurately forecast the impacts of climate change on animal population dynamics.


The Condor ◽  
2000 ◽  
Vol 102 (1) ◽  
pp. 35-51 ◽  
Author(s):  
Jerry D. Jacobs ◽  
John C. Wingfield

Abstract Most organisms live in seasonal environments that fluctuate on a predictable schedule and sometimes unpredictably. Individuals must, therefore, adjust so as to maximize their survival and reproductive success over a wide range of environmental conditions. In birds, as in other vertebrates, endocrine secretions regulate morphological, physiological, and behavioral changes in anticipation of future events. The individual thus prepares for predictable fluctuations in its environment by changing life-cycle stages. We have applied finite-state machine theory to define and compare different life-history cycles. The ability of birds to respond to predictable and unpredictable regimes of environmental variation may be constrained by the adaptability of their endocrine control systems. We have applied several theoretical approaches to natural history data of birds to compare the complexity of life cycles, the degree of plasticity of timing of stages within the cycle, and to determine whether endocrine control mechanisms influence the way birds respond to their environments. The interactions of environmental cues on the timing of life-history stages are not uniform in all populations. Taking the reproductive life-history stage as an example, arctic birds that have short breeding seasons in severe environments appear to use one reliable environmental cue to time reproduction and they ignore other factors. Birds having longer breeding seasons exhibit greater plasticity of onset and termination and appear to integrate several environmental cues. Theoretical approaches may allow us to predict how individuals respond to their environment at the proximate level and, conversely, predict how constraints imposed by endocrine control systems may limit the complexity of life cycles.


Sign in / Sign up

Export Citation Format

Share Document