Annotated catalogue of species of Angiostrongylus and the related genera Gallegostrongylus, Rodentocaulus and Stefanskostrongylus (Nematoda: Metastrongyloidea, Angiostrongylidae)

2019 ◽  
Vol 93 (04) ◽  
pp. 389-423 ◽  
Author(s):  
Robert H. Cowie

AbstractThis catalogue is concerned with the closely related angiostrongylid generaAngiostrongylus,Gallegostrongylus,RodentocaulusandStefanskostrongylus. Three species,Angiostrongylus cantonensis,A. costaricensisandA. vasorum, have attracted most attention because of their importance in human and domestic animal disease. Many of the remaining species are poorly known and the number of valid taxa is unclear. The catalogue lists all nomenclaturally available and unavailable genus-group and species-group names that have been applied to the above genera and the species included in them, indicating their current nomenclatural status and providing the rigorous nomenclatural basis for future work. The catalogue lists 14 published and nomenclaturally available genus-group names, with the above four treated as valid, the other ten being junior synonyms. There are 42 published species-group names: 36 are valid, two are junior synonyms, four are nomenclaturally unavailable. One additional species, described inChabaudistrongylus(synonym ofAngiostrongylus), is listed asincertae sedisin Angiostrongylidae. Also listed are two unpublished collection names. The catalogue provides bibliographic details for all published names, and for available names provides locations of type material, details of type localities, geographic distributions and details of type and other hosts, both definitive and intermediate, to the extent known. The catalogue is a work of nomenclature, not a revisionary taxonomic work. No new names or new combinations are proposed. The apparently new family-group synonymy of Cardionematinae with Angiostrongylidae is introduced, as are four genus-group synonymies, three withAngiostrongylusand one withStefaskostrongylus.

Zootaxa ◽  
2012 ◽  
Vol 3376 (1) ◽  
pp. 1 ◽  
Author(s):  
MAR FERRER-SUAY ◽  
JORDI PARETAS-MARTÍNEZ ◽  
JESÚS SELFA ◽  
JULI PUJADE-VILLAR

The Charipinae (Cynipoidea: Figitidae) are a small group of Hymenoptera biologically characterized as being secondary parasitoids of aphids and psyllids (Hemiptera) (Menke & Evenhuis, 1991).  A total of 281 species of Charipinae have been described since the first species was described by Westwood (1833) (including two fossils, one of them recently transferred in a new family, Protimaspidae). An updated world catalogue of the Charipinae is presented here, with 168 valid species: 111 included in Alloxysta Förster, 31 in Phaenoglyphis Förster, 13 in Dilyta Förster, 5 in Apocharips Fergusson, 4 in Thoreauana Girault, and 1 in Dilapothor Paretas-Martínez & Pujade-Villar, Lobopterocharips Paretas-Martínez & Pujade-Villar, Lytoxysta Kieffer and †Protocharips Kovalev. Eight species are considered as nomen nudum: Allotria fusca Dahlbom, 1842; Allotria thoreyi Dahlbom, 1842; Xystus xanthocephala Dahlbom, 1842; Allotria pusillina Giraud, 1877; Charips aphidiinaecida de Santis, 1937; Alloxysta keudelli Hedicke, 1927; Allotria amygdali Buckton, 1879 and  Allotria polita Provancher, 1881. Six as nomen dubium: Allotria (Allotria) recticornis atra Kieffer, 1902; Allotria (Allotria) brevicornis Kieffer, 1902;  Allotria (Allotria) orthocera Kieffer, 1902; Xystus femoralis Hartig, 1841; Charipsella laevigata Brèthes, 1913; Dilyta (Alloxysta) ignorata Kieffer, 1900. Three species are incertae sedis: Charips silvicola Belizin, 1928, Cynips atriceps Buckton, 1879 and Allotria (Allotria) testaceipes Kieffer, 1902. Two species are here synonymized: Alloxysta discreta (Förster, 1869) with A. ramulifera (Thomson, 1862) and A. megaptera (Cameron, 1889) with A. ruficollis (Cameron, 1883). Two species are raised from synonymy and considered here as valid species: Alloxysta cameroni (Cameron, 1883) and A. marshalliana (Kieffer, 1900). New names for species of Alloxysta are presented for homonimies with other Alloxysta species derived from the new combinations: Alloxysta ionescui Pujade-Villar & Ferrer-Suay new name for Alloxysta luteipes (Ionescu, 1969) n. comb., Alloxysta forshagei Pujade-Villar & Ferrer-Suay new name for Alloxysta bicolor (Ionescu, 1959) n. comb., and Alloxysta mattiasi Pujade-Villar & Ferrer-Suay new name for Alloxysta luteipes (Ionescu, 1959) n. comb. Also a new name to Phaenoglyphis is presented for the same reason before mentioned but without new combination: Phaenoglyphis hedickei Pujade-Villar & Ferrer-Suay new name for Phaenoglyphis longicornis Hedicke, 1928 and two new combinations are presented: Alloxysta rufa (Ionescu, 1959) n. comb and Alloxysta consobrina (Zetterstedt, 1838) Forshage n. comb. This catalogue includes: (i) a diagnosis of the subfamily with the most important taxonomic characters for species recognition, and illustrations of these characters; (ii) a key to genera; (iii) a list of all authors describing species of Charipinae; and (iv) a host table. The distribution of the Charipinae includes 106 Palaearctic species, 37 Nearctic, 11 Neotropical, 10 Afrotropical, 7 Oriental and 11 Australian. The species Alloxysta victrix (Westwood, 1833), A. fuscicornis (Hartig, 1841) and Phaenoglyphis villosa (Hartig, 1841) are cosmopolitan.


Zootaxa ◽  
2009 ◽  
Vol 1984 (1) ◽  
pp. 31-56 ◽  
Author(s):  
PIERFILIPPO CERRETTI ◽  
ALESSIO DE BIASE ◽  
Amnon Freidberg

The systematic position and generic limits of Rossimyiops Mesnil, 1953 (type species: R. whiteheadi Mesnil, 1953) are critically redefined. Examination of the male terminalia allowed us to demonstrate the unjustified placement of Rossimyiops within the subfamily Dexiinae, tribe Dufouriini and its probable affiliation with the subfamily Tachininae, tribe Minthoini. The following generic names are synonymised with Rossimyiops Mesnil, 1953: Mesnilomyia Kugler, 1972 (type species: M. magnifica Kugler, 1972) syn. nov., and Persedea Richter, 2001 (type species: P. exquisita Richter, 2001) syn. nov. The following new combinations are proposed: Rossimyiops achilleae (Kugler, 1972) comb. nov., R. exquisitus (Richter, 2001) comb. nov., R. longicornis (Kugler, 1972) comb. nov., R. magnificus (Kugler, 1972) comb. nov., and R. subapertus (Herting, 1983) comb. nov. Mesnilomyia rufipes Zeegers, 2007 is established as a synonym of Persedea exquisita Richter, 2001, syn. nov. Rossimyiops austrinus Cerretti sp. nov. from Namibia and Rossimyiops djerbaensis Cerretti sp. nov. from Tunisia are described, illustrated and compared with the other known species of the genus. Male terminalia and female external morphology of R. subapertus and R. whiteheadi are described for the first time. Finally, Mesnilomyia calyptrata Zeegers, 2007 is removed from this genus and placed as Tachinidae incertae sedis.


Zootaxa ◽  
2018 ◽  
Vol 4489 (1) ◽  
pp. 1 ◽  
Author(s):  
CELSO O. AZEVEDO ◽  
ISABEL D.C.C. ALENCAR ◽  
MAGNO S. RAMOS ◽  
DIEGO N. BARBOSA ◽  
WESLEY D. COLOMBO ◽  
...  

The flat wasp family Bethylidae Haliday lacks global scale literature on their alpha taxonomy. The only world revision for the family was by Kieffer in 1914 and is fully out of date and somewhat useless; the only catalog for the family was made by Gordh & Móczár in 1990 and does not include hundreds of changes made since then; and the most recent world genera keys were proposed by Terayama in 2003, but do not reflect the current knowledge we have for the family. Given this scenario, we present a global guide of Bethylidae with diagnoses, taxonomic evaluation, keys, and a checklist of all their extant genera and subfamilies. We visited the main collections around the world, analyzed about 2,000 holotypes, and examined at least 400,000 specimens. To eliminate homonymies, we add the prefix “neo” to the original specific epithet when possible. The family is now composed by 2,920 species allocated in 96 genera distributed in eight subfamilies: Bethylinae, Pristocerinae, Epyrinae, Mesitiinae, Scleroderminae, Lancepyrinae, Holopsenellinae and Protopristocerinae. The latter three are extinct. One new family-group synonym is proposed: Fushunochrysidae Hong syn. nov. of Bethylidae. Two incertae sedis genera are allocated into Bethylinae: Cretobethylellus Rasnytsyn and Omaloderus Walker. One new genus-group synonym is revalidated: Pristepyris Kieffer stat. rev. from Acrepyris Kieffer. Sixteen new genus-group synonyms are proposed: Fushunochrysites Hong syn. nov. and Sinibethylus Hong syn. nov. of Eupsenella Westwood; Messoria Meunier syn. nov. of Goniozus Förster; Acrepyris Kieffer syn. nov. of Pristepyris Kieffer; Apristocera Kieffer syn. nov. and Parapristocera Brues syn. nov. of Pristocera Klug; Usakosia Kieffer syn. nov. of Prosapenesia Kieffer; Isobrachium Förster syn. nov., Leptepyris Kieffer syn. nov., Neodisepyris Kurian syn. nov., Rhabdepyris Kieffer syn. nov. of Epyris Westwood; Codorcas Nagy syn. nov., Hamusmus Argaman syn. nov. and Ukayakos Argaman syn. nov. of Heterocoelia Dahlbom; Domonkos Argaman syn. nov. of Incertosulcus Móczár; Ateleopterus Förster syn. nov. of Sclerodermus Latreille. One new genus-group synonym is revalidated: Topcobius Nagy syn. rev. of Sulcomesitius Móczár. One new genus-group revalidation is proposed: Incertosulcus Móczár stat. rev. from Anaylax Móczár. The following species-group nomenclatural acts are established: 153 new or revalidated combinations, 16 new names to avoid secondary homonyms, 11 species with revalidated status, and one synonym. Keys to the subfamilies and genera are provided. The text is supported by 599 illustrations organized onto 92 plates. 


2020 ◽  
Vol 29 (4) ◽  
pp. 2109-2130
Author(s):  
Lauren Bislick

Purpose This study continued Phase I investigation of a modified Phonomotor Treatment (PMT) Program on motor planning in two individuals with apraxia of speech (AOS) and aphasia and, with support from prior work, refined Phase I methodology for treatment intensity and duration, a measure of communicative participation, and the use of effect size benchmarks specific to AOS. Method A single-case experimental design with multiple baselines across behaviors and participants was used to examine acquisition, generalization, and maintenance of treatment effects 8–10 weeks posttreatment. Treatment was distributed 3 days a week, and duration of treatment was specific to each participant (criterion based). Experimental stimuli consisted of target sounds or clusters embedded nonwords and real words, specific to each participants' deficit. Results Findings show improved repetition accuracy for targets in trained nonwords, generalization to targets in untrained nonwords and real words, and maintenance of treatment effects at 10 weeks posttreatment for one participant and more variable outcomes for the other participant. Conclusions Results indicate that a modified version of PMT can promote generalization and maintenance of treatment gains for trained speech targets via a multimodal approach emphasizing repeated exposure and practice. While these results are promising, the frequent co-occurrence of AOS and aphasia warrants a treatment that addresses both motor planning and linguistic deficits. Thus, the application of traditional PMT with participant-specific modifications for AOS embedded into the treatment program may be a more effective approach. Future work will continue to examine and maximize improvements in motor planning, while also treating anomia in aphasia.


2019 ◽  
Vol 67 (2) ◽  

Moderate endurance training is known to improve cardiovascular risk factors, and prolongs life expectancy. On the other hand, there has been some discussion whether “too much” exercise might have a contrarious effect by accelerating coronary atherosclerosis. The goal of this review was to evaluate the current literature on the effects of long-term vigorous endurance training on the coronary vasculature. In summary, data point to an increased calcium score, and a higher burden of atherosclerotic plaque in male athletes compared to sedentary controls. However, the plaques found in athletes were more prone to be calcified. The pathogenesis and clinical relevance of this athlete coronary artery disease phenotype remains incompletely understood and represents an area of important future work.


2019 ◽  
Vol 67 (2) ◽  

Moderate endurance training is known to improve cardiovascular risk factors, and prolongs life expectancy. On the other hand, there has been some discussion whether “too much” exercise might have a contrarious effect by accelerating coronary atherosclerosis. The goal of this review was to evaluate the current literature on the effects of long-term vigorous endurance training on the coronary vasculature. In summary, data point to an increased calcium score, and a higher burden of atherosclerotic plaque in male athletes compared to sedentary controls. However, the plaques found in athletes were more prone to be calcified. The pathogenesis and clinical relevance of this athlete coronary artery disease phenotype remains incompletely understood and represents an area of important future work.


Zootaxa ◽  
2019 ◽  
Vol 4613 (2) ◽  
pp. 327
Author(s):  
LAURENCE A. MOUND ◽  
DESLEY J. TREE

The genus Xylaplothrips is re-diagnosed, 11 species are listed as appropriately included in this genus of which three are new combinations from Haplothrips (X. acaciae; X. collyerae; X. gahniae). A further six species are listed as incertae sedis within Xylaplothrips and a key is provided to the four species of this genus known from Australia including X. anarsius sp.n. The genus Mesandrothrips is recalled from synonymy with Xylaplothrips, and a list is provided of 20 appropriately included species of which 14 are new combinations from Xylaplothrips (M. caliginosus; M. clavipes; M. darci; M. dubius; M. emineus; M. flavitibia; M. flavus; M. inquilinus; M. montanus; M. pictipes; M. pusillus; M. reedi; M. subterraneus; M. tener), and one is a new combination from Haplothrips (M. inquinatus). A key is provided to 10 species of this genus known from Australia, including three species transferred from Haplothrips, together with M. austrosteensia sp.n., M. googongi sp.n., M. kurandae sp.n., M. lamingtoni sp.n. and M. oleariae sp.n. The type species, M. inquilinus, is widespread across Southeast Asia as an invader of thrips galls, and Haplothrips darci Girault based on a single female from Queensland is considered closely related. 


2021 ◽  
Vol 11 (2) ◽  
pp. 740
Author(s):  
Krzysztof Zatwarnicki ◽  
Waldemar Pokuta ◽  
Anna Bryniarska ◽  
Anna Zatwarnicka ◽  
Andrzej Metelski ◽  
...  

Artificial intelligence has been developed since the beginning of IT systems. Today there are many AI techniques that are successfully applied. Most of the AI field is, however, concerned with the so-called “narrow AI” demonstrating intelligence only in specialized areas. There is a need to work on general AI solutions that would constitute a framework enabling the integration of already developed narrow solutions and contribute to solving general problems. In this work, we present a new language that potentially can become a base for building intelligent systems of general purpose in the future. This language is called the General Environment Description Language (GEDL). We present the motivation for our research based on the other works in the field. Furthermore, there is an overall description of the idea and basic definitions of elements of the language. We also present an example of the GEDL language usage in the JSON notation. The example shows how to store the knowledge and define the problem to be solved, and the solution to the problem itself. In the end, we present potential fields of application and future work. This article is an introduction to new research in the field of Artificial General Intelligence.


Zootaxa ◽  
2012 ◽  
Vol 3373 (1) ◽  
pp. 1 ◽  
Author(s):  
HOUHUN LI ◽  
KLAUS SATTLER

The genus Mesophleps Hübner (Lepidoptera: Gelechiidae) is revised; 54 available names (including one unjustifiedemendation), one junior primary homonym and one unavailable name were considered; type material of 44 previouslydescribed nominal species was examined. Nine new species are described: M. acutunca sp. nov., M. bifidella sp. nov., M.unguella sp. nov., M. gigantella sp. nov., M. coffeae sp. nov., M. parvella sp. nov., M. aspina sp. nov., M. truncatella sp.nov. and M. undulatella sp. nov. Two possibly new species are discussed but not formally named for lack of material.Twenty-five new combinations are introduced: M. safranella (Legrand, 1965) comb. nov., M. epichorda (Turner, 1919)comb. nov., M. tabellata (Meyrick, 1913) comb. nov., M. crocina (Meyrick, 1904) comb. nov., M. ochracella (Turati,1926) comb. nov., M. geodes (Meyrick, 1929) comb. nov., M. catericta (Meyrick, 1927) comb. nov., M. tephrastis(Meyrick, 1904) comb. nov., M. cycnobathra (Lower, 1898) comb. nov., M. tetrachroa (Lower, 1898) comb. nov., M.ochroloma (Lower, 1901) comb. nov., M. trichombra (Lower, 1898) comb. nov., M. mylicotis (Meyrick, 1904) comb. nov.,M. macrosemus (Lower, 1900) comb. nov., M. apentheta (Turner, 1919) comb. nov., M. meliphanes (Lower, 1894) comb.nov., M. chloranthes (Lower, 1900) comb. nov., M. centrothetis (Meyrick, 1904) comb. nov., M. chloristis (Meyrick,1904) comb. nov., M. argonota (Lower, 1901) comb. nov., Megacraspedus arnaldi (Turati & Krüger, 1936) comb. nov.,Aponoea cinerellus (Turati, 1930) comb. nov., Pycnobathra acromelas (Turner, 1919) comb. nov., Sarotorna mesoleuca(Lower, 1900) comb. nov., S. dentata Meyrick, 1904, comb. nov. One species, Nothris mesophracta Turner, 1919, isremoved from Mesophleps but no current genus is available. Fourteen new synonymies (one genus, 13 species-group taxa)are established: Bucolarcha Meyrick, 1929, syn. nov. of Mesophleps Hübner, [1825]; Stiphrostola longinqua Meyrick,1923, syn. nov. and Brachyacma trychota Meyrick, 1929, syn. nov. of M. ioloncha (Meyrick, 1905); Lipatia crotalariellaBusck, 1910, syn. nov. of M. adustipennis (Walsingham, 1897); Brachyacma epichorda Turner, 1919, syn. nov. of M.epiochra (Meyrick, 1886); Mesophleps pudicellus var. apicellus Caradja, 1920, syn. nov. and Mesophleps silacellus subsp.calaritanus Amsel, 1939, syn. nov. of M. silacella (Hübner, 1796); Mesophleps lala Agenjo, [1961], syn. nov. of M.corsicella (Herrich-Schäffer, 1856); Crossobela barysphena Meyrick, 1923, syn. nov. of M. trinotella Herrich-Schäffer,1856; Mesophleps orientella Nel & Nel, 2003, syn. n. and Mesophleps gallicella Varenne & Nel, 2011, syn. nov. of M.ochracella (Turati, 1926); Nothris centrothetis Meyrick, 1904, syn. nov. and Nothris chloristis Meyrick, 1904, syn. nov.of M. chloranthes (Lower, 1900); Mesophleps cinerellus Turati, 1930, syn. nov. of Aponoea obtusipalpis Walsingham,1905. One genus and one species are recalled from synonymy: Pycnobathra Lower, 1901, gen. rev., and M. ioloncha(Meyrick, 1905) sp. rev. Lectotypes are designated, in accordance with the Code, article 74.7.3, for 14 species: Gelechiapalpigera Walsingham, 1891; Paraspistes ioloncha Meyrick, 1905; Lathontogenus adustipennis Walsingham, 1897;Brachyacma epichorda Turner, 1919; Nothris crocina Meyrick, 1904; Nothris ochracella Turati, 1926; Nothris tephrastisMeyrick, 1904; Ypsolophus ochroloma Lower, 1901; Ypsolophus macrosemus Lower, 1900; Nothris centrothetis Meyrick,1904; Nothris chloristis Meyrick, 1904; Ypsolophus argonota Lower, 1901; Mesophleps arnaldi Turati & Krüger, 1936,and Mesophleps cinerellus Turati, 1930. Mesophleps is a widely distributed Old World genus, except for one New Worldspecies, with seed-feeding larvae on Cupressaceae, Cistaceae, Cruciferae (Brassicaceae), Leguminosae (Fabaceae), Rubiaceae and doubtfully Dipterocarpaceae.


2013 ◽  
Vol 24 (01) ◽  
pp. 1250126 ◽  
Author(s):  
SEUNG-MOON HONG

We consider two approaches to isotopy invariants of oriented links: one from ribbon categories and the other from generalized Yang–Baxter (gYB) operators with appropriate enhancements. The gYB-operators we consider are obtained from so-called gYBE objects following a procedure of Kitaev and Wang. We show that the enhancement of these gYB-operators is canonically related to the twist structure in ribbon categories from which the operators are produced. If a gYB-operator is obtained from a ribbon category, it is reasonable to expect that two approaches would result in the same invariant. We prove that indeed the two link invariants are the same after normalizations. As examples, we study a new family of gYB-operators which is obtained from the ribbon fusion categories SO (N)2, where N is an odd integer. These operators are given by 8 × 8 matrices with the parameter N and the link invariants are specializations of the two-variable Kauffman polynomial invariant F.


Sign in / Sign up

Export Citation Format

Share Document