Expression and immunolocalisation of antimicrobial peptides within human palatine tonsils

2007 ◽  
Vol 121 (10) ◽  
pp. 973-978 ◽  
Author(s):  
S L Ball ◽  
G P Siou ◽  
J A Wilson ◽  
A Howard ◽  
B H Hirst ◽  
...  

Background: Recurrent acute tonsillitis is one of the most frequent ENT referrals, yet its pathogenesis remains poorly understood, and tonsillectomy still costs the National Health Service more than £60 000 000 annually. Antimicrobial cationic peptides are components of the innate immune system. They are generally small, highly positively charged peptides with broad spectrum antimicrobial activity which function as the body's ‘natural antibiotics'. The role of antimicrobial cationic peptides in the susceptibility of patients to recurrent acute tonsillitis is unknown.Aims: To characterise and compare antimicrobial cationic peptide expression and localisation in human palatine tonsils from control subjects and recurrent acute tonsillitis patients, and to assess the potential role of these peptides in the pathogenesis of tonsillitis.Methods: Palatine tonsils were harvested with informed consent from 19 recurrent acute tonsillitis patients and from five control subjects undergoing tonsillectomy for sleep disorders. Total ribonucleic acid was isolated and antimicrobial cationic peptide expression was characterised using reverse transcription polymerase chain reaction. Fluorescent immunohistochemical techniques were used to localise antimicrobial cationic peptides within fresh frozen tonsil sections.Results: Using molecular analyses, the palatine tonsils from control and recurrent acute tonsillitis subjects were confirmed as a site of expression of the antimicrobial cationic peptides human β-defensin 1–3, LL-37 (cathelicidin) and Liver expressed antimicrobial peptide-1 (LEAP-1). We also demonstrated for the first time the expression of Liver expressed antimicrobial peptide-2 (LEAP-2). Our analyses indicated that all six antimicrobial cationic peptides were expressed in all 26 tonsil samples. Immunohistochemical staining indicated that the antimicrobial cationic peptides were localised to the tonsil surface and crypt epithelium. However, the surface epithelium of tonsils from recurrent acute tonsillitis patients showed reduced amounts of antimicrobial peptides human β-defensins 1 and 3, and LL-37, compared with healthy controls.Conclusion: The tonsil epithelium synthesises an array of antimicrobial cationic peptides which function as host defence. Preliminary immunohistochemical data suggest that the surface epithelium of tonsils from recurrent acute tonsillitis patients contains reduced amounts of such peptides, which may increase these patients' susceptibility to infection.

2016 ◽  
Vol 41 (6) ◽  
Author(s):  
Mehmet Gökhan Demir ◽  
Sedat Aydın ◽  
Banu Atalay Erdoğan ◽  
Serpil Oğuztüzün ◽  
Murat Kılıç ◽  
...  

AbstractBackground:Recurrent acute tonsillitis is one of the most frequent otorhinolaryngology clinic referrals, yet its pathogenesis remains poorly understood. Antimicrobial cationic peptides are components of the innate system. They are generally small, highly positively charged peptides with broad spectrum antimicrobial activity which function as the body’s “natural antibiotics”. Our aim is to investigate the role of antimicrobial cationic peptides in the susceptibility of patients to recurrent acute tonsillitis.Materials and methods:The study is done with 100 children who had a history of recurrent adenotonsillitis as subject group and 100 children with adenotonsillar hypertrophy as control group. Tonsillar and adenoid tissues are dissected into parts as deep and surface epithelium and investigated semiquantitatively with immunohistochemistry. Human beta defensin (hBD) 1–3 and cathelecidin (LL-37) levels are compared with microscopically.Results:Immunohistochemistry revealed a strong expression of hBD-1, hBD-2 and hBD-3 in tonsillar tissue. Quantification of hBD-1, hBD-2 and hBD-3 expressions are shown more in tonsillar tissue than in adenoids. LL-37 is one of the antimicrobial peptides found in human tonsillar tissue and adenoids, that participates in the innate immune system of these tissues. Statistically, hBD-1, hBD-3 and LL-37 expressions were different in recurrent tonsillitis tissue than control (p<0.05). Moreover hBD-2 expression was different in adenoid tissue than control (p<0.05).Conclusion:Antimicrobial peptides have key role in adenotonsillar infections and this defense mechanism increases susceptibility to recurrent infections in upper respiratory tract.


2005 ◽  
Vol 73 (8) ◽  
pp. 5241-5244 ◽  
Author(s):  
Barbara E. Menzies ◽  
Aimee Kenoyer

ABSTRACT Keratinocytes upregulate expression of endogenous antimicrobial peptides in response to inflammatory stimuli. We show that both viable and heat-inactivated Staphylococcus aureus and lipoteichoic acid differentially alter expression of these peptides upon contact with human keratinocytes. The findings indicate a diversity of staphylococcal factors involved in upregulation of antimicrobial peptide expression in cutaneous epithelia.


2014 ◽  
Vol 63 (5) ◽  
pp. 73-81 ◽  
Author(s):  
Olesya Nikolaevna Ivashova ◽  
Olga Petrovna Lebedeva ◽  
Sergey Petrovich Pakhomov ◽  
Natal’ya Alexandrovna Rudyh ◽  
Marina Sergeevna Seliverstova

Antimicrobial peptides (AMP) are cationic peptides of innate immune system with antiviral, antibacterial and antiprotozoal activity. AMP act as immunomodulators, promote bacterial opsonization, inhibit proteases activity, have anti-endotoxic and angiogenic effect. The review describes main types of AMPs, features of their expression in female reproductive tract depending from menstrual cycle and during pregnancy. Data about the role of AMPs in defending from sexually transmitted infections (HIV, genital herpes, HPV, gonorrhea), in pathogenesis of extrauterine pregnancy and preterm birth are described. Possibility of practical application of AMPs as alternative to antibiotics and as contraceptives is estimated.


2021 ◽  
Vol 1 (19) ◽  
pp. 173-174
Author(s):  
R.N. Kruglikov ◽  
T.V. Ovchinnikova ◽  
P.V. Panteleev

A new proline-rich antimicrobial peptide from alpaca (Vicugnia pacos) was obtained, as well as its modified analogs. The biological activity of the peptides was studied, and also the role of the N- and C-terminal fragments, when acting on bacterial cells, was analyzed.


2006 ◽  
Vol 74 (12) ◽  
pp. 6982-6991 ◽  
Author(s):  
Peter Bergman ◽  
Linda Johansson ◽  
Hong Wan ◽  
Allison Jones ◽  
Richard L. Gallo ◽  
...  

ABSTRACT Antimicrobial peptides are present in most living species and constitute important effector molecules of innate immunity. Recently, we and others have detected antimicrobial peptides in the brain. This is an organ that is rarely infected, which has mainly been ascribed to the protective functions of the blood-brain barrier (BBB) and meninges. Since the bactericidal properties of the BBB and meninges are not known, we hypothesized that antimicrobial peptides could play a role in these barriers. We addressed this hypothesis by infecting mice with the neuropathogenic bacterium Neisseria meningitidis. Brains were analyzed for expression of the antimicrobial peptide CRAMP by immunohistochemistry in combination with confocal microscopy. After infection, we observed induction of CRAMP in endothelial cells of the BBB and in cells of the meninges. To explore the functional role of CRAMP in meningococcal disease, we infected mice deficient of the CRAMP gene. Even though CRAMP did not appear to protect the brain from invasion of meningococci, CRAMP knockout mice were more susceptible to meningococcal infection than wild-type mice and exhibited increased meningococcal growth in blood, liver, and spleen. Moreover, we could demonstrate that carbonate, a compound that accumulates in the circulation during metabolic acidosis, makes meningococci more susceptible to CRAMP.


2021 ◽  
Vol 23 (1) ◽  
pp. 326
Author(s):  
Oleg V. Kondrashov ◽  
Sergey A. Akimov

Antimicrobial peptides (AMPs) are considered prospective antibiotics. Some AMPs fight bacteria via cooperative formation of pores in their plasma membranes. Most AMPs at their working concentrations can induce lysis of eukaryotic cells as well. Gramicidin A (gA) is a peptide, the transmembrane dimers of which form cation-selective channels in membranes. It is highly toxic for mammalians as being majorly hydrophobic gA incorporates and induces leakage of both bacterial and eukaryotic cell membranes. Both pore-forming AMPs and gA deform the membrane. Here we suggest a possible way to reduce the working concentrations of AMPs at the expense of application of highly-selective amplifiers of AMP activity in target membranes. The amplifiers should alter the deformation fields in the membrane in a way favoring the membrane-permeabilizing states. We developed the statistical model that allows describing the effect of membrane-deforming inclusions on the equilibrium between AMP monomers and cooperative membrane-permeabilizing structures. On the example of gA monomer-dimer equilibrium, the model predicts that amphipathic peptides and short transmembrane peptides playing the role of the membrane-deforming inclusions, even in low concentration can substantially increase the lifetime and average number of gA channels.


Sign in / Sign up

Export Citation Format

Share Document