Solitary Rugose Corals of the Upper Ordovician Montoya Group, Southern New Mexico and Westernmost Texas

1985 ◽  
Vol 59 (S16) ◽  
pp. 1-58 ◽  
Author(s):  
Robert J. Elias

The Upper Ordovician (middle Edenian to upper Richmondian) Montoya Group of southern New Mexico and westernmost Texas comprises, in ascending order, the Second Value Dolomite, Aleman Formation, and Cutter Dolomite. Solitary rugose corals in the Second Value are Grewingkia robusta (Whiteaves, 1896), Bighornia sp. cf. B. patella (Wilson, 1926), Streptelasma divaricans (Nicholson, 1875), a new species of Neotryplasma, and Salvadorea? spp. A and B. Salvadorea kingae kingae Nelson, 1981, G. franklinensis n. sp., and G. crassa alemanensis n. subsp. occur in the Aleman. Taxa found in the Cutter are S. kingae cutterensis n. subsp., G. sp. cf. G. franklinensis, and B. sp. cf. B. patella.Grewingkia robusta is the most abundant species in the solitary rugosan assemblage that is present within the Second Value. This assemblage apparently inhabited comparatively deep-water environments. Most of the corals lived in relatively high-energy conditions, but epizoic forms favored low-energy niches. Salvadorea kingae is the most common taxon in the assemblage that characterizes the Aleman-Cutter. This is probably a comparatively shallow-water assemblage. The dominant taxon inhabited relatively low-energy environments, while less common species lived in higher energy conditions. If the distribution of solitary rugose corals in the area of Montoya deposition was related primarily to water depth, a paleobathymetric gradient from relatively deep in the west to predominantly shallow in the southeast existed through Second Value–Aleman time. During Cutter time, water was relatively deep in the southwest and northeast, and predominantly shallow in the southeast. If the degree of environmental restriction was the principal factor limiting the distribution of Montoya solitary Rugosa, open normal marine environments were predominant in the southeast and uncommon in the north and west.Montoya representatives of Grewingkia, Bighornia, and Salvadorea indicate that the area of deposition was situated within the Red River–Stony Mountain Solitary Coral Province, which occupied most of North America during Late Ordovician time. All species of these genera are typical “epicontinental” forms. Neotryplasma, the only “continental margin” taxon, reflects a cratonic margin paleoposition. The discovery of Streptelasma divaricans within Edenian-Maysvillian strata in the Montoya is consistent with an hypothesis that solitary Rugosa were introduced to the Richmond Solitary Coral Province of eastern North America during an early Richmondian transgression.Within the Red River–Stony Mountain Province, geographic speciation and dispersion seem to have been important factors in the evolution and diversification of Grewingkia robusta and related taxa, including G. haysii selkirkensis n. subsp. from the Selkirk Member of the Red River Formation in southern Manitoba. In Salvadorea, speciation events within the New Mexico–Texas area and Williston Basin were apparently rapid, and coincided with onsets of clastic deposition. Evolutionary change within this genus has not been recognized in the Hudson Bay Basin, where there were no clastic influxes.In the Aleman-Cutter sequence of the Montoya Group, recognition of specific intervals bearing solitary rugose corals may permit detailed biostratigraphic, and possibly chronostratigraphic, correlation. The change from a Grewingkia-dominated assemblage to a Salvadorea-dominated assemblage was not synchronous throughout the Red River–Stony Mountain Province, and the ranges of widely distributed species such as G. robusta and S. kingae cannot be considered isochronous from basin to basin. Within particular basins, endemic taxa having restricted stratigraphic ranges, such as G. crassa alemanensis, can be useful biostratigraphic markers. Streptelasma divaricans remains useful as a Richmondian index fossil in strata within the area occupied by the Richmond Province.

1990 ◽  
Vol 64 (3) ◽  
pp. 340-352 ◽  
Author(s):  
Robert J. Elias ◽  
Danita S. Brandt ◽  
T. H. Clark

Two species of solitary rugose corals occur in Late Ordovician strata of the St. Lawrence Lowland. Grewingkia canadensis (Billings, 1862) appears in the upper part of the Nicolet River Formation (upper St. Hilaire Member) and is far more common in the overlying Pontgravé River Formation. A single specimen of Streptelasma divaricans (Nicholson, 1875) is known from the Pontgravé River. Their presence confirms that this area is situated within the Richmond Province and that the upper Nicolet River, as well as the Pontgravé River, is Richmondian in age. Solitary Rugosa were introduced to this biogeographic province during an early Richmondian transgression, marked in the upper Nicolet River Formation by a coarser clastic interval. That event permits correlation between the St. Lawrence Lowland in the eastern part of the Richmond Province and the North American type Upper Ordovician (Cincinnatian Series) of the Cincinnati Arch region in the western part of the province.A comparative morphologic, paleoecologic, and biostratinomic analysis of solitary corals indicates that normal, low-energy conditions were interrupted occasionally by high-energy events (probably storms) during deposition of the upper Nicolet River and Pontgravé River Formations. Water depth increased northwestward in the St. Lawrence Lowland area. Deposition of these siliciclastic prodelta to delta front sediments was generally continuous and the sedimentation rate was usually high because of rapid basin subsidence and comparatively close proximity to the Taconic Mountains. In the western part of the Richmond Province, farther from the source area, carbonate as well as clastic sediments accumulated, periods of nondeposition were more frequent, and the sedimentation rate was relatively low. Corals disappeared from the St. Lawrence Lowland area during the Richmondian, when delta top facies of the Bécancour River Formation succeeded the Pontgravé River Formation due to a glacio-eustatic regression and progradation of the Queenston Delta.


2019 ◽  
Vol 66 (4) ◽  
pp. 435-444 ◽  
Author(s):  
Liang Lü ◽  
Chen-Yang Cai ◽  
Xi Zhang ◽  
Alfred F Newton ◽  
Margaret K Thayer ◽  
...  

Abstract Staphylinoidea (Insecta: Coleoptera) is one of the most species-rich groups in animals, but its huge diversity can hardly be explained by the popular hypothesis (co-radiation with angiosperms) that applies to phytophagous beetles. We estimated the evolutionary mode of staphylinoid beetles and investigated the relationship between the evolutionary mode and palaeoclimate change, and thus the factors underlying the current biodiversity pattern of staphylinoid beetles. Our results demonstrate that staphylinoid beetles originated at around the Triassic–Jurassic bound and the current higher level clades underwent rapid evolution (indicated by increased diversification rate and decreased body size disparity) in the Jurassic and in the Cenozoic, both with low-energy climate, and they evolved much slower during the Cretaceous with high-energy climate. Climate factors, especially low O2 and high CO2, promoted the diversification rate and among-clade body size disparification in the Jurassic. In the Cenozoic, however, climate factors had negative associations with diversification rate but little with body size disparification. Our present study does not support the explosion of staphylinoid beetles as a direct outcome of the Cretaceous Terrestrial Revolution (KTR). We suppose that occupying and diversifying in refuge niches associated with litter may elucidate rapid radiations of staphylinoid beetles in low-energy conditions.


1992 ◽  
Vol 6 ◽  
pp. 177-177
Author(s):  
Peter B. Lask

Cyclocrinitids are considered to be calcareous green algae closely related to, or members of, the dasycladacean algae. Cyclocrinitids are characterized by a globular thallus 1-5 cm in diameter consisting of whorls of calcified meromes borne from a tubular or spherical central axis. The species Cyclocrinites darwini is distinguished from other cyclocrinitids by the presence of lateral branches arranged in a stellate pattern at the distal end of each merome.C. darwini is restricted to strata of the Cincinnatian Series. Specimens are commonly found in shale-filled channels cutting through nodular, irregularly-bedded limestones within the Mt. Auburn Formation and the lower Sunset Member of the Arnheim Formation. Numerous specimens are also known from the Bellevue Member of the Grant Lake Formation at Maysville, Kentucky. Each of these units has been interpreted to be the top of separate shoaling-upward, third-order cycles. These facies are abundantly fossiliferous, often consisting of broken, abraded, and reworked material.The modern dasyclad Neomeris is cited for its structural similarity to the cyclocrinitids and ecological parallels have been postulated as well. Neomeris and a similar dasyclad Batophora, thrive while attached to pieces of coral rubble at depths of less than 3 m in the high-energy conditions associated with a reef crest environment at Key Largo, Florida.It is likely that C. darwini lived under similar conditions, attached to rubble in shoaling areas. Preservation only occurred in instances when thalli were broken off from their holdfasts and swept into ripple troughs or downslope channels cutting across the shoals. It has been suggested that the presence of cyclocrinitids is indicative of relatively quiet environments below wave base. For Cyclocrinites darwini, the opposite would appear to be the case.


1999 ◽  
Vol 73 (S51) ◽  
pp. 1-38 ◽  
Author(s):  
Reed Wicander ◽  
Geoffrey Playford ◽  
Eddie B. Robertson

A well-preserved and moderately diverse acritarch assemblage was recovered from the upper Ordovician Maquoketa Shale of northeastern Missouri. Based on graptolite and conodont evidence, the Maquoketa in northeastern Missouri is considered Richmondian (=Ashgill) in age.The acritarch assemblage comprises 28 species, distributed among 17 genera including two new genera,CaelatosphaeraandStictosoma.There are 11 new species,Baltisphaeridium adiastaltum, Caelatosphaera verminosa(type species),Dorsennidium undosum, Elektoriskos aktinotos, Lophosphaeridium acinatum, L. varum, Micrhystridium hirticulum, M. prolixum, Peteinosphaeridium accinctulum, P. septuosum, andStictosoma gemmata(type species); together with two species similar to previously named species and three species left in open nomenclature. Cosmopolitan and stratigraphically important species identified includeBaltisphaeridium perclarumLoeblich and Tappan, 1978;Cheleutochroasp. cf.C. diaphorosaTurner, 1984;Dorsennidium hamii(Loeblich, 1970) Sarjeant and Stancliffe, 1994;Excultibrachium concinnumLoeblich and Tappan, 1978;Orthosphaeridium insculptumLoeblich, 1970;O. rectangulare(Eisenack, 1963) Eisenack, 1968, andVillosacapsula setosapellicula(Loeblich, 1970) Loeblich and Tappan, 1976.Polygonium gracileVavrdová, 1966 emend. Sarjeant and Stancliffe, 1994 andMicrhystridium hirticulumnew species dominate the assemblage, followed byDorsennidium undosumnew species,Baltisphaeridium oligopsakiumLoeblich and Tappan, 1978,Veryhachiumsp. cf.V. oklahomenseLoeblich, 1970,Peteinosphaeridium accinctulumnew species, andLophosphaeridium acinatumnew species. Additionally, the palynoflora contains chitinozoans, scolecodonts, cryptospores, and the enigmatic palynomorphGloeocapsomorpha priscaZalessky, 1917 emend. Foster, Reed, and Wicander, 1989.Paleontologic-palynologic and sedimentologic evidence indicates that the Maquoketa Shale at the two studied localities accumulated under low energy, somewhat offshore, and unrestricted marine conditions. The present Maquoketa Shale acritarch palynoflora shows greatest similarity to those of the Sylvan Shale (Ashgill; Richmondian) of Oklahoma and the Maquoketa Shale (Caradoc and Ashgill) of Kansas. Whereas there are some cosmopolitan acritarch species present in the Maquoketa Shale, its palynoflora shows no pronounced similarity with age-equivalent acritarch suites from outside of North America.


2014 ◽  
Vol 152 (4) ◽  
pp. 603-620 ◽  
Author(s):  
JORGE COLMENAR ◽  
J. JAVIER ÁLVARO

AbstractThe Upper Ordovician (Katian–Hirnantian) brachiopods of Tafilalt, eastern Anti-Atlas, are locally abundant, diverse and well preserved, providing a near-continuous record of faunal change on a high-latitude siliciclastic-dominated platform. A chronostratigraphic framework, based on brachiopod distribution and preservation in shell accumulation events and integrated with sequence stratigraphy, has been generated for the Katian interval, which has allowed correlation with the chitinozoan-based chronostratigraphic and sequence-stratigraphic framework erected for the central Anti-Atlas. In Tafilalt, two Katian (transgressive–regressive) composite depositional sequences, c. 60 and 170 m thick and related to third-order fluctuations in sea level, were unaffected by Hirnantian glaciogenic erosion. They were deposited on a mixed platform with a bryonoderm association dominated by brachiopods, bryozoans and echinoderms. Brachiopods developed in high-energy inner shelf areas, whereas bryozoans (mainly trepostomates and fenestrates) and pelmatozoans (cystoids and crinoids) dominated in low-energy outer shelf areas. Brachiopod accumulations mark distinct event surfaces, such as lag and event concentrations, hydraulic simple and composite concentrations related to transgressive surfaces, and hiatal condensed concentrations marking maximum flooding surfaces. The taphonomic condensation displayed by the Hirnantian Alnif Member, which onlaps the erosive base of glaciogenic tunnel channels, is explained as reworking and resedimentation of allochthonous, robust, biogenic hard parts sourced from the underlying (Katian) Ktaoua Group.


1980 ◽  
Vol 17 (2) ◽  
pp. 272-277 ◽  
Author(s):  
Robert J. Elias

Borings occur in solitary rugose corals from the Selkirk Member of the late Middle or Upper Ordovician Red River Formation in southern Manitoba. They are assigned to Dictyoporus garsonensis n. ichnosp., which was produced by algae, and Trypanites weisei Mägdefrau 1932, made by spionid polychaete annelids. Most, and possibly all, boring occurred while the host corals were alive and in life position. The location and relative abundance of borings support interpretations that unattached curved solitary corals lay with the convex cardinal side in the sediment and the concave counter side facing upward during life, whereas straight conical forms were oriented upright in the sediment. These ichnospecies suggest that host corals lived in very shallow marine environments.


2019 ◽  
Vol 131 (9-10) ◽  
pp. 1411-1439 ◽  
Author(s):  
Brian R. Pratt ◽  
Juan J. Ponce

AbstractInterpreting the deposits of ancient epeiric seas presents unique challenges because of the lack of direct modern analogs. Whereas many such seas were tectonically relatively quiescent, and successions are comparatively thin and punctuated by numerous sedimentary breaks, the Mesoproterozoic Belt Basin of western North America was structurally active and experienced dramatic and continuous subsidence and sediment accumulation. The Grinnell Formation (ca. 1.45 Ga) in the lower part of the Belt Supergroup affords an opportunity to explore the interplay between sedimentation and syndepositional tectonics in a low-energy, lake-like setting. The formation is a thick, vivid, red- to maroon-colored mudstone-dominated unit that crops out in northwestern Montana and adjacent southwestern Alberta, Canada. The mudstone, or argillite, consists of laminated siltstone and claystone, with normal grading, local low-amplitude, short-wavelength symmetrical ripples, and intercalations of thin tabular intraclasts. These intraclasts suggest that the muds acquired a degree of stiffness on the seafloor. Halite crystal molds and casts are present sporadically on bedding surfaces. Beds are pervasively cut by mudcracks exhibiting a wide variety of patterns in plan view, ranging from polygonal to linear to spindle-shaped. These vertical to subvertical cracks are filled with upward-injected mud and small claystone intraclasts. Variably interbedded are individual, bundled, or amalgamated, thin to medium beds of white, cross-laminated, medium- to coarse-grained sandstone, or quartzite. These are composed of rounded quartz grains, typically with subangular to rounded mudstone intraclasts. Either or both the bottoms and tops of sandstone beds commonly show sandstone dikes indicative of downward and upward injection. Both the mudcracks and the sandstone dikes are seismites, the result of mud shrinkage and sediment injection during earthquakes. An origin via passive desiccation or syneresis is not supported, and there is no evidence that the sediments were deposited on alluvial plains, tidal flats, or playas, as has been universally assumed. Rather, deposition occurred in relatively low-energy conditions at the limit of ambient storm wave base. The halite is not from in situ evaporation but precipitated from hypersaline brines that were concentrated in nearshore areas and flowed into the basin causing temporary density stratification. Sandstone beds are not fluvial. Instead, they consist of allochthonous sediment and record a combination of unidirectional and oscillatory currents. The rounded nature of the sand and irregular stratigraphic distribution of the sandstone intervals are explained not by deltaic influx or as tempestites but as coastal sands delivered from the eastern side of the basin by off-surge from episodic tsunamis generated by normal faulting mainly in the basin center. The sands were commonly reworked by subsequent tsunami onrush, off-surge, seiching, and weak storm-induced wave action. Although the Grinnell Formation might appear superficially to have the typical hallmarks of a subaerial mudflat deposit, its attributes in detail reveal that sedimentation and deformation took place in an entirely submerged setting. This is relevant for the deposits of other ancient epeiric seas as well as continental shelves, and it should invite reconsideration of comparable successions.


Sign in / Sign up

Export Citation Format

Share Document