scholarly journals Paleoecology of Cyclocrinites darwini (Miller) - a cyclocrinitid alga from the Cincinnatian series (Upper Ordovician)

1992 ◽  
Vol 6 ◽  
pp. 177-177
Author(s):  
Peter B. Lask

Cyclocrinitids are considered to be calcareous green algae closely related to, or members of, the dasycladacean algae. Cyclocrinitids are characterized by a globular thallus 1-5 cm in diameter consisting of whorls of calcified meromes borne from a tubular or spherical central axis. The species Cyclocrinites darwini is distinguished from other cyclocrinitids by the presence of lateral branches arranged in a stellate pattern at the distal end of each merome.C. darwini is restricted to strata of the Cincinnatian Series. Specimens are commonly found in shale-filled channels cutting through nodular, irregularly-bedded limestones within the Mt. Auburn Formation and the lower Sunset Member of the Arnheim Formation. Numerous specimens are also known from the Bellevue Member of the Grant Lake Formation at Maysville, Kentucky. Each of these units has been interpreted to be the top of separate shoaling-upward, third-order cycles. These facies are abundantly fossiliferous, often consisting of broken, abraded, and reworked material.The modern dasyclad Neomeris is cited for its structural similarity to the cyclocrinitids and ecological parallels have been postulated as well. Neomeris and a similar dasyclad Batophora, thrive while attached to pieces of coral rubble at depths of less than 3 m in the high-energy conditions associated with a reef crest environment at Key Largo, Florida.It is likely that C. darwini lived under similar conditions, attached to rubble in shoaling areas. Preservation only occurred in instances when thalli were broken off from their holdfasts and swept into ripple troughs or downslope channels cutting across the shoals. It has been suggested that the presence of cyclocrinitids is indicative of relatively quiet environments below wave base. For Cyclocrinites darwini, the opposite would appear to be the case.

2014 ◽  
Vol 152 (4) ◽  
pp. 603-620 ◽  
Author(s):  
JORGE COLMENAR ◽  
J. JAVIER ÁLVARO

AbstractThe Upper Ordovician (Katian–Hirnantian) brachiopods of Tafilalt, eastern Anti-Atlas, are locally abundant, diverse and well preserved, providing a near-continuous record of faunal change on a high-latitude siliciclastic-dominated platform. A chronostratigraphic framework, based on brachiopod distribution and preservation in shell accumulation events and integrated with sequence stratigraphy, has been generated for the Katian interval, which has allowed correlation with the chitinozoan-based chronostratigraphic and sequence-stratigraphic framework erected for the central Anti-Atlas. In Tafilalt, two Katian (transgressive–regressive) composite depositional sequences, c. 60 and 170 m thick and related to third-order fluctuations in sea level, were unaffected by Hirnantian glaciogenic erosion. They were deposited on a mixed platform with a bryonoderm association dominated by brachiopods, bryozoans and echinoderms. Brachiopods developed in high-energy inner shelf areas, whereas bryozoans (mainly trepostomates and fenestrates) and pelmatozoans (cystoids and crinoids) dominated in low-energy outer shelf areas. Brachiopod accumulations mark distinct event surfaces, such as lag and event concentrations, hydraulic simple and composite concentrations related to transgressive surfaces, and hiatal condensed concentrations marking maximum flooding surfaces. The taphonomic condensation displayed by the Hirnantian Alnif Member, which onlaps the erosive base of glaciogenic tunnel channels, is explained as reworking and resedimentation of allochthonous, robust, biogenic hard parts sourced from the underlying (Katian) Ktaoua Group.


1985 ◽  
Vol 59 (S16) ◽  
pp. 1-58 ◽  
Author(s):  
Robert J. Elias

The Upper Ordovician (middle Edenian to upper Richmondian) Montoya Group of southern New Mexico and westernmost Texas comprises, in ascending order, the Second Value Dolomite, Aleman Formation, and Cutter Dolomite. Solitary rugose corals in the Second Value are Grewingkia robusta (Whiteaves, 1896), Bighornia sp. cf. B. patella (Wilson, 1926), Streptelasma divaricans (Nicholson, 1875), a new species of Neotryplasma, and Salvadorea? spp. A and B. Salvadorea kingae kingae Nelson, 1981, G. franklinensis n. sp., and G. crassa alemanensis n. subsp. occur in the Aleman. Taxa found in the Cutter are S. kingae cutterensis n. subsp., G. sp. cf. G. franklinensis, and B. sp. cf. B. patella.Grewingkia robusta is the most abundant species in the solitary rugosan assemblage that is present within the Second Value. This assemblage apparently inhabited comparatively deep-water environments. Most of the corals lived in relatively high-energy conditions, but epizoic forms favored low-energy niches. Salvadorea kingae is the most common taxon in the assemblage that characterizes the Aleman-Cutter. This is probably a comparatively shallow-water assemblage. The dominant taxon inhabited relatively low-energy environments, while less common species lived in higher energy conditions. If the distribution of solitary rugose corals in the area of Montoya deposition was related primarily to water depth, a paleobathymetric gradient from relatively deep in the west to predominantly shallow in the southeast existed through Second Value–Aleman time. During Cutter time, water was relatively deep in the southwest and northeast, and predominantly shallow in the southeast. If the degree of environmental restriction was the principal factor limiting the distribution of Montoya solitary Rugosa, open normal marine environments were predominant in the southeast and uncommon in the north and west.Montoya representatives of Grewingkia, Bighornia, and Salvadorea indicate that the area of deposition was situated within the Red River–Stony Mountain Solitary Coral Province, which occupied most of North America during Late Ordovician time. All species of these genera are typical “epicontinental” forms. Neotryplasma, the only “continental margin” taxon, reflects a cratonic margin paleoposition. The discovery of Streptelasma divaricans within Edenian-Maysvillian strata in the Montoya is consistent with an hypothesis that solitary Rugosa were introduced to the Richmond Solitary Coral Province of eastern North America during an early Richmondian transgression.Within the Red River–Stony Mountain Province, geographic speciation and dispersion seem to have been important factors in the evolution and diversification of Grewingkia robusta and related taxa, including G. haysii selkirkensis n. subsp. from the Selkirk Member of the Red River Formation in southern Manitoba. In Salvadorea, speciation events within the New Mexico–Texas area and Williston Basin were apparently rapid, and coincided with onsets of clastic deposition. Evolutionary change within this genus has not been recognized in the Hudson Bay Basin, where there were no clastic influxes.In the Aleman-Cutter sequence of the Montoya Group, recognition of specific intervals bearing solitary rugose corals may permit detailed biostratigraphic, and possibly chronostratigraphic, correlation. The change from a Grewingkia-dominated assemblage to a Salvadorea-dominated assemblage was not synchronous throughout the Red River–Stony Mountain Province, and the ranges of widely distributed species such as G. robusta and S. kingae cannot be considered isochronous from basin to basin. Within particular basins, endemic taxa having restricted stratigraphic ranges, such as G. crassa alemanensis, can be useful biostratigraphic markers. Streptelasma divaricans remains useful as a Richmondian index fossil in strata within the area occupied by the Richmond Province.


1990 ◽  
Vol 64 (3) ◽  
pp. 340-352 ◽  
Author(s):  
Robert J. Elias ◽  
Danita S. Brandt ◽  
T. H. Clark

Two species of solitary rugose corals occur in Late Ordovician strata of the St. Lawrence Lowland. Grewingkia canadensis (Billings, 1862) appears in the upper part of the Nicolet River Formation (upper St. Hilaire Member) and is far more common in the overlying Pontgravé River Formation. A single specimen of Streptelasma divaricans (Nicholson, 1875) is known from the Pontgravé River. Their presence confirms that this area is situated within the Richmond Province and that the upper Nicolet River, as well as the Pontgravé River, is Richmondian in age. Solitary Rugosa were introduced to this biogeographic province during an early Richmondian transgression, marked in the upper Nicolet River Formation by a coarser clastic interval. That event permits correlation between the St. Lawrence Lowland in the eastern part of the Richmond Province and the North American type Upper Ordovician (Cincinnatian Series) of the Cincinnati Arch region in the western part of the province.A comparative morphologic, paleoecologic, and biostratinomic analysis of solitary corals indicates that normal, low-energy conditions were interrupted occasionally by high-energy events (probably storms) during deposition of the upper Nicolet River and Pontgravé River Formations. Water depth increased northwestward in the St. Lawrence Lowland area. Deposition of these siliciclastic prodelta to delta front sediments was generally continuous and the sedimentation rate was usually high because of rapid basin subsidence and comparatively close proximity to the Taconic Mountains. In the western part of the Richmond Province, farther from the source area, carbonate as well as clastic sediments accumulated, periods of nondeposition were more frequent, and the sedimentation rate was relatively low. Corals disappeared from the St. Lawrence Lowland area during the Richmondian, when delta top facies of the Bécancour River Formation succeeded the Pontgravé River Formation due to a glacio-eustatic regression and progradation of the Queenston Delta.


2021 ◽  
pp. 1-17
Author(s):  
Jef Vandenberghe ◽  
Xun Yang ◽  
Xianyan Wang ◽  
Shejiang Wang ◽  
Huayu Lu

Abstract This paper describes an assemblage of diverse floodplain facies of reworked loess (facies b, c) in a Middle Pleistocene monsoonal setting of the Hanzhong Basin, central China. The vertical and lateral sedimentary sequences show changing energy conditions. Apart from the highest energy in the channel facies (facies a), a relatively high energy floodplain environment (facies b) prevailed in waterlogged conditions, with small, laterally migrating (sub)channels. Facies b generally interfingers with aggrading horizontal sheets of overbank deposits in alluvial pools and swamps in a floodplain with much lower energy (facies c), in which phases of stability (soil formation) occasionally interrupted overbank deposition. Reworked loess forms the main part of the floodplain deposits. The paleosols are considered to have been formed under low hydrodynamic conditions in an interglacial environment. These interglacial conditions follow the commonly assumed glacial conditions of channel facies a. The sedimentary successions in the floodplain show a recurrent composition and cyclicity between wet and dry floodplain sedimentation terminated by stability with soil formation. The cyclic rhythm of stacked high- and low-energy floodplain sediments is attributed to varied intensity of different hydrodynamic flooding events that may have been due to changing monsoonal rainfall or simple intrinsic fluvial behavior.


1993 ◽  
Vol 71 (4) ◽  
pp. 523-532 ◽  
Author(s):  
Joanna Fraser ◽  
Eric G. Kokko

The initial stages of panicle, spikelet, and floret development in field-grown 'Kay' orchardgrass were examined using scanning electron microscopy. Spikelets arose from a complex multilevelled sequence of initiation from branch apices. Spikelets developed indirectly in a two-tiered progression: (i) an acropetal and basipetal sequence of first order, second-order, and third-order inflorescence apices, and (ii) an acropetal development within subclusters of higher-order lateral branch inflorescence apices. The panicle had the unique feature of dorsiventrality as well as bilateral symmetry. The basal apex from first-order, second-order, or third-order apices developed on the same side of the main axis as the first-order apex. The two glumes subtending each spikelet primordium developed alternately and acropetally. Development and initiation of florets within spikelets was basipetal within the panicle, basipetal within clusters and subclusters of spikelets on lateral branches, and acropetal within spikelets. Within florets, paleas developed later than lemmas. Key words: Dactylis glomerata, cocksfoot, scanning electron microscopy, development, panicle.


1878 ◽  
Vol 5 (6) ◽  
pp. 269-270
Author(s):  
R. Etheridge

1. Arbusculites argentea, P. Murray (Edinb. N. Phil. Journ. 1831, vol. xi. p. 147).—Under the title, “Account of the Arbusculites argentea, from the Carboniferous Limestone of Inverteil, near to Kirkcaldy, in Fifeshire,” a curious paper was published in 1831, by Dr. P. Murray, of Scarborough. The organisms are described as “very delicate vermiform bodies, in fragments of different lengths, shining with metallic lustre, neither articulated nor cellular, and resembling broken bits of silver wire.” The author adds, “It would appear to have been an attached Mollusc, dichotomous at first, but afterwards sending out lateral branches, moderately tapering, and with very distant and obscure (if any) articulations, grooved longitudinally, and composed of a bright silvery cortical case, and a solid axis of carbonate of lime. … It differs decidedly from the Crinoidal animals, which are regularly articulated; and varies nearly in the same degree from the Corallines, etc., by not displaying the cellular structure characteristic of that family.” Dr. Murray ultimately places this fossil amongst the Corallines, selecting for it a provisional resting-place in the third order of the first class of Lamouroux.


Endocrinology ◽  
2011 ◽  
Vol 152 (12) ◽  
pp. 4672-4682 ◽  
Author(s):  
Hyun-Kyong Kim ◽  
Mi-Seon Shin ◽  
Byung-Soo Youn ◽  
Churl Namkoong ◽  
So Young Gil ◽  
...  

Progranulin (PGRN) is a secreted glycoprotein with multiple biological functions, including modulation of wound healing and inflammation. Hypothalamic PGRN has been implicated in the development of sexual dimorphism. In the present study, a potential role for PGRN in the hypothalamic regulation of appetite and body weight was investigated. In adult rodents, PGRN was highly expressed in periventricular tanycytes and in hypothalamic neurons, which are known to contain glucose-sensing machinery. Hypothalamic PGRN expression levels were decreased under low-energy conditions (starvation and 2-deoxy-D-glucose administration) but increased under high-energy condition (postprandially). Intracerebrovetricular administration of PGRN significantly suppressed nocturnal feeding as well as hyperphagia induced by 2-deoxyglucose, neuropeptide Y, and Agouti-related peptide. Moreover, the inhibition of hypothalamic PGRN expression or action increased food intake and promoted weight gain, suggesting that endogenous PGRN functions as an appetite suppressor in the hypothalamus. Investigation of the mechanism of action revealed that PGRN diminished orexigenic neuropeptide Y and Agouti-related peptide production but stimulated anorexigenic proopiomelanocortin production, at least in part through the regulation of hypothalamic AMP-activated protein kinase. Notably, PGRN was also expressed in hypothalamic microglia. In diet-induced obese mice, microglial PGRN expression was increased, and the anorectic response to PGRN was blunted. These findings highlight a physiological role for PGRN in hypothalamic glucose-sensing and appetite regulation. Alterations in hypothalamic PGRN production or action may be linked to appetite dysregulation in obesity.


2021 ◽  
pp. SP523-2021-76
Author(s):  
Robert W. Dalrymple

AbstractThis study reviews the morphology, hydrodynamics and sedimentology of 33 modern straits, including examples from diverse tectonic and climatic settings. Strait morphology ranges from short, simple straits to long, tortuous passages many 100s of kilometers long; depths range from 10 m to >1 km. The morphological building block of strait sedimentation is a constriction flanked by open basins; a single strait can contain one or several of these. Currents accelerate through the constrictions and decelerate in the basins, leading to a spatial alternation of high- and low-energy conditions. Currents in a strait can be classified as either ‘persistent’ (oceanic currents or density-driven circulation) or ‘intermittent’ (tidally or meteorologically generated currents). Constrictions tend to be bedload partings, with the development of transport paths that diverge outward. Deposition occurs where the flow decelerates, generating paired subaqueous ‘constriction-related deltas’ that can be of unequal size. Cross-bedding predominates in high-energy settings; muddy sediment waves and contourite drifts are present in some straits. In shallow straits that were exposed during the sea-level lowstand, strait deposits typically occur near or at the maximum flooding surface, and can overlie estuarine and fluvial deposits. The most energetic deposits need not occur at the time of maximum inundation.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5746061


2016 ◽  
Vol 18 (1) ◽  
pp. 19-31
Author(s):  
Florin TĂTUI

Longshore sandbars along wave-dominated sandy beaches are important for beach-dune system protection during storms. Our analysis is based on 6 years of seasonal and annual bathymetric surveys along 16 km of erosive, stable and accumulative low-lying non-tidal beaches northward of Sf. Gheorghe arm mouth (Danube Delta – Romanian Black Sea coast). Our results show significant correlations established between longshore sandbar crest positions and morphology with more intense coupling between the inner and outer sandbar sub-systems during high-energy conditions and more frequent along the northern erosive sector in comparison with the southern/central accumulative/stable ones. There is a good connection between the long-term shoreline mobility and sandbars offshore migration rates along different sectors of the study area, with faster sandbars movement and shorter cycle return periods along the northern erosive sector in comparison with the central (stable) and southern (accretionary) sectors. The longshore variations of the nearshore slope are the main driver of the relationship between long-term sandbars dynamics and shoreline variability along the study site.


2021 ◽  
pp. SP514-2021-10
Author(s):  
Matías Reolid ◽  
Mohamed Soussi ◽  
Jesús Reolid ◽  
Wolfgang Ruebsam ◽  
Ilef Belhaj Taher ◽  
...  

AbstractThe flooding of the Lower Jurassic shelf in the North Gondwana Palaeomargin during the early Toarcian occurred on a fragmented and irregular topography affected by differential subsidence—due to the activity of listric faults along the North-South Axis of Tunisia—that favoured lateral changes in facies and thickness at a kilometric scale. The onset of Toarcian sedimentation (Polymorphum ammonite Zone, NJT5c nannofossil Subzone) in two adjacent sections was characterised by the deposition of limestones under high-energy conditions. The Châabet El Attaris section was located in a depressed sub-basin, and recorded restricted environmental conditions owing to water stagnation and an oxygen-depleted sea-bottom. Therefore, dark mudstones developed, with increased TOC contents and enhanced accumulation of redox-sensitive elements. The sedimentation of limestones bearing gutter cast structures is related to gravity flows probably linked to storm activities. These processes favoured the remobilization of sediments at the sea floor, as well as oxygen input to bottom waters, as shown by the record of trace fossils including Zoophycos, Ophiomorpha, and secondarily, Chondrites and Diplocraterion. The thinly interbedded dark mudstones are locally rich in thin-shelled bivalves that re-colonised the sea bottom after the sedimentation of these high-energy deposits, and subsequently underwent mass mortality related to the return of oxygen-depleted conditions. The Kef El Hassine section is located in the upper part of a tilted, less subsident block, as indicated by its reduced thickness compared with the Châabet El Attaris section; the absence of dark mudstones implies oxic conditions. The Polymorphum Zone consists of limestones showing evidence of sedimentation under high-energy conditions, along with hardgrounds. The occurrence of Zoophycos (deep-tiers) in the upper part of some limestone beds of the Polymorphum Zone is linked to minor erosive processes. The top of the high-energy sequence—below the deposits of a marly interval corresponding to the Levisoni Zone—is interpreted as a hardground given the high content of belemnites and Arenicolites, some of them boring on the eroded Zoophycos and Thalassinoides. This study shows that the sedimentary expression of the Jenkyns Event is not uniform across Tunisia, supporting the importance of local conditions in determining the development of anoxic conditions.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5510162


Sign in / Sign up

Export Citation Format

Share Document