Effects of collisions and gyroviscosity on gravitational instability in a two-component plasma

1972 ◽  
Vol 8 (3) ◽  
pp. 393-400 ◽  
Author(s):  
F. Herrnegger

The dispersion relation for gravitational instability has been given within the framework of a two-fluid theory. It has been shown that the Jeans criterion is changed by finite Larmor radius and by collisions for waves propagating perpendicular to the magnetic field. The critical wavenumber for instability decreases with increasing Alfvén velocity and with increasing gyroviscosity. Instability does not set in with overstabiity.

1977 ◽  
Vol 18 (2) ◽  
pp. 273-286 ◽  
Author(s):  
R. P. S. Chhonkar ◽  
P. K. Bhatia

The gravitational instability of a two-component plasma has been studied here to include simultaneously the effects of neutral gas friction, finite ion Larmor radius, magnetic resistivity and Hall currents. The viscosities of the two components of the plasma have also been taken into account. The mode of the transverse as well as the longitudinal wave propagation have been discussed. The dispersion relations have been obtained for both these cases and numerical calculations have been performed to obtain the dependence of the growth rate of the gravitationally unstable mode on the various physical parameters involved. For the transverse mode of propagation, it is found that the growth rate of the unstable mode increases with magnetic resistivity and with the ratio of the densities of two components. The influence of the magnetic resistivity is, therefore, destabilizing on this mode of wave propagation. The viscosities of the two components are found to have a stabilizing influence on the growth rate in this case since it is found that the increase of hte viscosity effects reduces the growth rate. For the longitudinal mode also it is found that the effects of viscosities as well as that of neutral gas friction are stabilizing. The magnetic resistivity does not affect the growth rate since the equation determining the growth rate is found to be independent of this effect.


1971 ◽  
Vol 5 (3) ◽  
pp. 365-373 ◽  
Author(s):  
A. D. Lunn

Jeans's criterion for instability is found to be changed only for the case of perturbations perpendicular to the magnetic field and rotation parallel to it, when rotation and finite Larmor radius effects tend to stabilize the plasma.


2007 ◽  
Vol 25 (1) ◽  
pp. 271-282 ◽  
Author(s):  
R. Smets ◽  
G. Belmont ◽  
D. Delcourt ◽  
L. Rezeau

Abstract. Using hybrid simulations, we examine how particles can diffuse across the Earth's magnetopause because of finite Larmor radius effects. We focus on tangential discontinuities and consider a reversal of the magnetic field that closely models the magnetopause under southward interplanetary magnetic field. When the Larmor radius is on the order of the field reversal thickness, we show that particles can cross the discontinuity. We also show that with a realistic initial shear flow, a Kelvin-Helmholtz instability develops that increases the efficiency of the crossing process. We investigate the distribution functions of the transmitted ions and demonstrate that they are structured according to a D-shape. It accordingly appears that magnetic reconnection at the magnetopause is not the only process that leads to such specific distribution functions. A simple analytical model that describes the built-up of these functions is proposed.


2021 ◽  
Vol 87 (4) ◽  
Author(s):  
Y. Nakajima ◽  
H. Himura ◽  
A. Sanpei

We derive the two-dimensional counter-differential rotation equilibria of two-component plasmas, composed of both ion and electron ( $e^-$ ) clouds with finite temperatures, for the first time. In the equilibrium found in this study, as the density of the $e^{-}$ cloud is always larger than that of the ion cloud, the entire system is a type of non-neutral plasma. Consequently, a bell-shaped negative potential well is formed in the two-component plasma. The self-electric field is also non-uniform along the $r$ -axis. Moreover, the radii of the ion and $e^{-}$ plasmas are different. Nonetheless, the pure ion as well as $e^{-}$ plasmas exhibit corresponding rigid rotations around the plasma axis with different fluid velocities, as in a two-fluid plasma. Furthermore, the $e^{-}$ plasma rotates in the same direction as that of $\boldsymbol {E \times B}$ , whereas the ion plasma counter-rotates overall. This counter-rotation is attributed to the contribution of the diamagnetic drift of the ion plasma because of its finite pressure.


1974 ◽  
Vol 29 (3) ◽  
pp. 518-523 ◽  
Author(s):  
K. M. Srivastava

We have investigated the effect of finite Larmor radius on the Rayleigh-Taylor instability of a semi-infinite, compressible, stratified and infinitely conducting plasma. The plasma is assumed to have a one dimensional density and magnetic field gradients. The eigenvalue problem has been solved under Boussinesq approximation for disturbances parallel to the magnetic field. It has been established that for perturbation parallel to the magnetic field, the system is stable for both stable and unstable stratification. For perturbation perpendicular to the magnetic field, the problem has been solved without Boussinesq approximation. The dispersion relation has been discussed in the two limiting cases, the short and long wave disturbances. It has been observed that the gyroviscosity has a destabilizing influence from k = 0 to k = 4.5 for ß* = 0.1 and for ß* = 0.1 up to k* = 2.85 and then onwards it acts as a stabilizing agent. It has a damping effect on the short wave disturbances. For some parameters, the largets imaginary part has been shown in Figs. 1 and 2


1969 ◽  
Vol 47 (8) ◽  
pp. 831-834 ◽  
Author(s):  
G. L. Kalra

The effect of finite ion Larmor radius on the gravitational instability of two superposed fluids in uniform rotation is investigated for interchange perturbations, using the macroscopic equations of motion, where the finite ion Larmor radius effect is incorporated through off-diagonal terms in the pressure tensor. It is found that the region of stable wavelengths is enhanced due to the simultaneous presence of finite Larmor radius and a uniform rotation. A similar conclusion is also arrived at for the situation when a vortex sheet is present between the two superposed fluids.


Sign in / Sign up

Export Citation Format

Share Document