Relaxed state of a toroidal fusion plasma with stationary flows

1993 ◽  
Vol 50 (3) ◽  
pp. 385-401 ◽  
Author(s):  
R. Żelazny ◽  
A. Gałkowski

Relaxation of a plasma in the presence of zeroth-order flows is studied in a realistic toroidal geometry. The field-aligned flow allows equilibria with finite pressure gradient but homogeneous temperature distribution. Numerical calculations have been performed for the first and second ellipticity regimes of the extended Grad–Shafranov–Schlüter equation. Two distinct classes of solutions exist, depending on the value of the safety factor: one with horizontally stratified density and pressure and one with concentric surfaces of constant density. A comparison of these results is made with those of Finn and Antonsen.

1990 ◽  
Vol 61 (2) ◽  
pp. 830-833 ◽  
Author(s):  
Yasushi Kawashima ◽  
Yoshihiko Tsuchida ◽  
Wataru Utsumi ◽  
Takehiko Yagi

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 927 ◽  
Author(s):  
Anmona Shabnam Pranti ◽  
Daniel Loof ◽  
Sebastian Kunz ◽  
Marcus Bäumer ◽  
Walter Lang

This paper presents a long-term stable thermoelectric micro gas sensor with ligand linked Pt nanoparticles as catalyst. The sensor design gives an excellent homogeneous temperature distribution over the catalytic layer, an important factor for long-term stability. The sensor consumes very low power, 18 mW at 100 °C heater temperature. Another thermoresistive sensor is also fabricated with same material for comparative analysis. The thermoelectric sensor gives better temperature homogeneity and consumes 23% less power than thermoresistive sensor for same average temperature on the membrane. The sensor shows linear characteristics with temperature change and has significantly high Seebeck coefficient of 6.5 mV/K. The output of the sensor remains completely constant under 15,000 ppm continuous H2 gas flow for 24 h. No degradation of sensor signal for 24 h indicates no deactivation of catalytic layer over the time. The sensor is tested with 3 different amount of catalyst at 2 different operating temperatures under 6000 ppm and 15,000 ppm continuous H2 gas flow for 4 h. Sensor output is completely stable for 3 different amount of catalyst.


2019 ◽  
Vol 111 ◽  
pp. 02039
Author(s):  
Mustafa Mutlu ◽  
Emre Çalışkan

Minimum temperature difference should be achieved in conditioned rooms to meet comfort criteria. It is desired that the temperature set by a user from the control unit, should be the same in the entire room. Therefore, the position of the control unit plays a significant role in order to achieve a homogeneous temperature distribution in the room. In this study, the effect of control unit positioning on temperature and velocity distributions in a room, where a cassette type indoor unit was applied, was numerically investigated. Blowing temperature and speed of the indoor unit has been adjusted by the temperature value that measured by a control unit which was placed at five different locations, in order to examine positioning effects of the control unit. Predicted percentage dissatisfied (PPD) values were calculated, and uncomfortable zones were determined by 2-dimensional analyses. Cooling loads, as well as energy consumptions, were calculated and their variations according to the position of control unit was figured out in steady state conditions. The results showed that control unit positioning not only influences the comfort levels or temperature distributions in a room but also energy consumptions.


2014 ◽  
Vol 30 (4) ◽  
pp. 411-422 ◽  
Author(s):  
E. H. Aly ◽  
A. Ebaid

AbstractThe peristaltic flow of nanofluids under the effect of slip conditions was theoretically investigated. The mathematical model was governed by a system of linear and non-linear partial differential equations with prescribed boundary conditions. Then, the exact solutions were successfully obtained and reported for the first time in the present work. These exact solutions were then used for studying the effects of the slip, thermophoresis, Brownian motion parameters and many others on the pressure rise, velocity profiles, temperature distribution, nanoparticle concentration and pressure gradient. In addition, it is proved that the obtained exact solutions are reduced to the literature results in the special cases.In the general case, it was found that on comparing the current solutions with the approximate ones obtained using the homotopy perturbation method in literature, remarkable differences have been detected for behaviour of the pressure rise, velocity profiles, temperature distribution, nanoparticle concentration and finally the pressure gradient. An example of these differences is about effect of the Brownian motion parameter on the velocity profile; where it was shown in this paper that the small values of this parameter have not a significant effect on the velocity, while this situation was completely different in the published work. Many other significant differences have been also discussed. Therefore, these observed differences recommend the necessity of including the convergence issue when applying the homotopy perturbation method or any other series solution method to solve a physical model. In conclusion. The current results may be considered as a base for any future analysis and/or comparisons.


2005 ◽  
Vol 248 (1-4) ◽  
pp. 455-460 ◽  
Author(s):  
J.C. Conde ◽  
P. González ◽  
F. Lusquiños ◽  
S. Chiussi ◽  
J. Serra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document