Rossby-wave driven zonal flows in the ionospheric E-layer

2007 ◽  
Vol 73 (1) ◽  
pp. 131-140 ◽  
Author(s):  
T. D. KALADZE ◽  
D. J. WU ◽  
O. A. POKHOTELOV ◽  
R. Z. SAGDEEV ◽  
L. STENFLO ◽  
...  

Abstract.A novel mechanism for the generation of large-scale zonal flows by small-scale Rossby waves in the Earth's ionospheric E-layer is considered. The generation mechanism is based on the parametric excitation of convective cells by finite amplitude magnetized Rossby waves. To describe this process a generalized Charney equation containing both vector and scalar (Korteweg–de Vries type) nonlinearities is used. The magnetized Rossby waves are supposed to have arbitrary wavelengths (as compared with the Rossby radius). A set of coupled equations describing the nonlinear interaction of magnetized Rossby waves and zonal flows is obtained. The generation of zonal flows is due to the Reynolds stresses produced by finite amplitude magnetized Rossby waves. It is found that the wave vector of the fastest growing mode is perpendicular to that of the magnetized Rossby pump wave. Explicit expression for the maximum growth rate as well as for the optimal spatial dimensions of the zonal flows are obtained. A comparison with existing results is carried out. The present theory can be used for the interpretation of the observations of Rossby-type waves in the Earth's ionosphere.

2004 ◽  
Vol 11 (2) ◽  
pp. 241-244 ◽  
Author(s):  
O. G. Onishchenko ◽  
O. A. Pokhotelov ◽  
R. Z. Sagdeev ◽  
P. K. Shukla ◽  
L. Stenflo

Abstract. A novel mechanism for the short-scale Rossby waves interacting with long-scale zonal flows in the Earth's atmosphere is studied. The model is based on the parametric excitation of convective cells by finite amplitude Rossby waves. We use a set of coupled equations describing the nonlinear interaction of Rossby waves and zonal flows which admits the excitation of zonal flows. The generation of such flows is due to the Reynolds stresses of the finite amplitude Rossby waves. It is found that the wave vector of the fastest growing mode is perpendicular to that of the pump Rossby wave. We calculate the maximum instability growth rate and deduce the optimal spatial dimensions of the zonal flows as well as their azimuthal propagation speed. A comparison with previous results is made. The present theory can be used for the interpretation of existing observations of Rossby type waves in the Earth's atmosphere.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 635-643 ◽  
Author(s):  
T. D. KALADZE ◽  
O. A. POKHOTELOV ◽  
M. SHAD

AbstractThe generation of large-scale zonal flows by small-scale electrostatic drift waves in electron–positron–ion (EPI) plasma is considered. The generation mechanism is based on the parametric excitation of convective cells by finite amplitude drift waves. To describe this process, the Hasegawa–Mima equation generalized for the case of EPI plasma is used. Explicit expressions for the maximum growth rate as well as for the optimal spatial dimensions of the zonal flows are obtained. Dependence of the growth rate on the spectrum purity of the wave packet is also investigated. The relevant instability conditions are determined.


2009 ◽  
Vol 75 (3) ◽  
pp. 345-357 ◽  
Author(s):  
T. D. KALADZE ◽  
H. A. SHAH ◽  
G. MURTAZA ◽  
L. V. TSAMALASHVILI ◽  
M. SHAD ◽  
...  

AbstractThe influence of non-monochromaticity on low-frequency, large-scale zonal-flow nonlinear generation by small-scale magnetized Rossby (MR) waves in the Earth's ionospheric E-layer is considered. The modified parametric approach is used with an arbitrary spectrum of primary modes. It is shown that the broadening of the wave packet spectrum of pump MR waves leads to a resonant interaction with a growth rate of the order of the monochromatic case. In the case when zonal-flow generation by MR modes is prohibited by the Lighthill stability criterion, the so-called two-stream-like mechanism for the generation of sheared zonal flows by finite-amplitude MR waves in the ionospheric E-layer is possible. The growth rates of zonal-flow instabilities and the conditions for driving them are determined. The present theory can be used for the interpretation of the observations of Rossby-type waves in the Earth's ionosphere and in laboratory experiments.


2008 ◽  
Vol 74 (3) ◽  
pp. 381-389 ◽  
Author(s):  
Yu. A. ZALIZNYAK ◽  
A. I. YAKIMENKO ◽  
V. M. LASHKIN

AbstractThe generation of large-scale zonal flows by small-scale electrostatic drift waves in electron temperature gradient driven turbulence model is considered. The generation mechanism is based on the modulational instability of a finite amplitude monochromatic drift wave. The threshold and growth rate of the instability as well as the optimal spatial scale of zonal flow are obtained.


2007 ◽  
Vol 37 (8) ◽  
pp. 2158-2171 ◽  
Author(s):  
Yu Zhang ◽  
Joseph Pedlosky

Abstract The triad instability of the large-scale, first-mode, baroclinic Rossby waves is studied in the context of the planetary scale when the Coriolis parameter is to its lowest order varying with latitude. Accordingly, rather than remain constant as in quasigeostrophic theory, the deformation radius also changes with latitude, yielding new and interesting features to the propagation and triad instability processes. On the planetary scale, baroclinic waves vary their meridional wavenumbers along group velocity rays while they conserve both frequencies and zonal wavenumbers. The amplitudes of both barotropic and baroclinic waves would change with latitude along a ray path in the same way that the Coriolis parameter does if effects of the nonlinear interaction are ignored. The triad interaction for a specific triad is localized within a small latitudinal band where the resonance conditions are satisfied and quasigeostrophic theory is applicable locally. Using the growth rate from that theory as a measure, at each latitude along the ray path of the basic wave, a barotropic wave and a secondary baroclinic wave are picked up to form the most unstable triad and the distribution of this maximum growth rate is examined. It is found to increase southward under the assumption that triad interactions do not cause a noticeable decrease in the quantity of the basic wave’s amplitude divided by the Coriolis parameter. Different barotropic waves that maximize the growth rate at different latitudes have almost the same meridional length scale, on the order of the deformation radius. With many rays starting from different latitudes on the eastern boundary and with wavenumbers on each of them satisfying the no-normal-flow condition, the resulting two-dimensional distribution of the growth rate is a complicated function of the relative relations of zonal wavenumbers or frequencies on different rays and the orientation of the eastern boundary. In general, the growth rate is largest on rays originating to the north.


1978 ◽  
Vol 19 (1) ◽  
pp. 55-61 ◽  
Author(s):  
L. A. Pitale

On a time-scale of the order of the energy relaxation time, a high power laser beam, propagating in a strongly ionized magnetoplasma is shown to be unstable for small scale fluctuations. In the domain r0 < [mi/m]½ λm. v2/[ω2c + v2] (r0, λm, v, ωc, and m being respectively the spatial scale of the perturbation, electron mean free path, collision frequency, cyclotron frequency and mass and mi being the ion mass) the main loss of excess electron energy is due to thermal conduction; in the other limit collisional loss dominates. It is shown that for small scale fluctuations the growth rate increases with (i) increasing magnetic field and (ii) increasing r0. For large scale fluctuations the magnetic field does not show any effect; the growth rate, however, diminishes with increasing spatial scale. A maximum growth rate is obtained both for some optimum value of scale length and for intensity of the main beam.


1975 ◽  
Vol 67 (3) ◽  
pp. 417-443 ◽  
Author(s):  
W. V. R. Maekus ◽  
M. R. E. Proctor

Past study of the large-scale consequences of forced small-scale motions in electrically conducting fluids has led to the ‘α-effect’ dynamos. Various linear kinematic aspects of these dynamos have been explored, suggesting their value in the interpretation of observed planetary and stellar magnetic fields. However, large-scale magnetic fields with global boundary conditions can not be force free and in general will cause large-scale motions as they grow. I n this paper the finite amplitude behaviour of global magnetic fields and the large-scale flows induced by them in rotating systems is investigated. In general, viscous and ohmic dissipative mechanisms both play a role in determining the amplitude and structure of the flows and magnetic fields which evolve. In circumstances where ohmic loss is the principal dissipation, it is found that determination of a geo- strophic flow is an essential part of the solution of the basic stability problem. Nonlinear aspects of the theory include flow amplitudes which are independent of the rotation and a total magnetic energy which is directly proportional to the rotation. Constant a is the simplest example exhibiting the various dynamic balances of this stabilizing mechanism for planetary dynamos. A detailed analysis is made for this case to determine the initial equilibrium of fields and flows in a rotating sphere.


Author(s):  
Jonathan Skipp ◽  
Sergey Nazarenko

Abstract We study the thermodynamic equilibrium spectra of the Charney- Hasegawa-Mima (CHM) equation in its weakly nonlinear limit. In this limit, the equation has three adiabatic invariants, in contrast to the two invariants of the 2D Euler or Gross-Pitaevskii equations, which are examples for comparison. We explore how the third invariant considerably enriches the variety of equilibrium spectra that the CHM system can access. In particular we characterise the singular limits of these spectra in which condensates occur, i.e. a single Fourier mode (or pair of modes) accumulate(s) a macroscopic fraction of the total invariants. We show that these equilibrium condensates provide a simple explanation for the characteristic structures observed in CHM systems of finite size: highly anisotropic zonal flows, large-scale isotropic vortices, and vortices at small scale. We show how these condensates are associated with combinations of negative thermodynamic potentials (e.g. temperature).


Author(s):  
Theodore G. Shepherd

The chapter begins with a phenomenological treatment of the observed atmospheric circulation. It then goes on to discuss how the barotropic model arises as a so-calledbalanced model of the slow, vorticity-driven dynamics, from the more general shallowwater model which also admits inertia-gravity waves. This is important because large-scale atmospheric turbulence exhibits aspects of both balanced and unbalanced dynamics. Because of the first-order importance of zonal flows in the atmospheric general circulation, the large-scale turbulence is highly inhomogeneous, and is shaped by the nature of the interaction between zonal flows and Rossby waves described eloquently by Michael McIntyre as a wave-turbulence jigsaw puzzle. This motivates a review of the barotropic theory of wave, mean-flow interaction, which is underpinned by the Hamiltonian structure of geophysical fluid dynamics.


2018 ◽  
Vol 84 (2) ◽  
Author(s):  
E. G. Highcock ◽  
N. R. Mandell ◽  
M. Barnes ◽  
W. Dorland

The confinement of heat in the core of a magnetic fusion reactor is optimised using a multidimensional optimisation algorithm. For the first time in such a study, the loss of heat due to turbulence is modelled at every stage using first-principles nonlinear simulations which accurately capture the turbulent cascade and large-scale zonal flows. The simulations utilise a novel approach, with gyrofluid treatment of the small-scale drift waves and gyrokinetic treatment of the large-scale zonal flows. A simple near-circular equilibrium with standard parameters is chosen as the initial condition. The figure of merit, fusion power per unit volume, is calculated, and then two control parameters, the elongation and triangularity of the outer flux surface, are varied, with the algorithm seeking to optimise the chosen figure of merit. A twofold increase in the plasma power per unit volume is achieved by moving to higher elongation and strongly negative triangularity.


Sign in / Sign up

Export Citation Format

Share Document