Electrostatic solitary structures in a charge-varying pair–ion–dust plasma

2007 ◽  
Vol 73 (3) ◽  
pp. 403-415 ◽  
Author(s):  
MOULOUD TRIBECHE ◽  
LEILA AIT GOUGAM ◽  
NADIA BOUBAKOUR ◽  
TAHA HOUSSINE ZERGUINI

AbstractLarge-amplitude electrostatic solitary structures are investigated in an unmagnetized charge-varying pair–ion–dust plasma in which electrons and positrons have equal masses. Their spatial patterns are significantly modified by the presence of the positron component. In particular, it may be noted that an addition of a small concentration of positrons abruptly reduces the potential pulse amplitude as well as the net negative charge residing on the dust grain surface. Under certain conditions, the solitary wave suffers the well-known anomalous damping leading to the development of collisionless shock waves. This investigation may be taken as a prerequisite for the understanding of the electrostatic solitary waves that may occur in space dusty plasmas.

2007 ◽  
Vol 73 (5) ◽  
pp. 793-810 ◽  
Author(s):  
N. ARINAMINPATHY ◽  
J. E. ALLEN ◽  
J. R. OCKENDON

AbstractThe study of dusty plasmas is of significant practical use and scientific interest. A characteristic feature of dust grains in a plasma is that they are typically smaller than the electron Debye distance, a property which we exploit using the technique of matched asymptotic expansions. We first consider the case of a spherical dust particle in a stationary plasma, employing the Allen–Boyd–Reynolds theory, which assumes cold, collisionless ions. We derive analytical expressions for the electric potential, the ion number density and ion velocity. This requires only one computation that is not specific to a single set of dust–plasma parameters, and sheds new light on the shielding distance of a dust grain. The extension of this calculation to the case of uniform ion streaming past the dust grain, a scenario of interest in many dusty plasmas, is less straightforward. For streaming below a certain threshold we again establish asymptotic solutions but above the streaming threshold there appears to be a fundamental change in the behaviour of the system.


2009 ◽  
Vol 75 (2) ◽  
pp. 259-272
Author(s):  
MOULOUD TRIBECHE

AbstractThe recent analysis of large-amplitude solitary potentials in a charge varying dusty plasma with trapped dust particles (Tribeche, M. 2005 Phys. Plasmas12, 072304) is extended to include the electron trapping self-consistently. The non-isothermal trapped electron charging is investigated based on the orbit motion limited approach. It is found that the nonlinear localized potential structure enlarges when the electrons deviate from isothermality. The effect of this deviation is more significant under certain conditions. The dust particles are locally expelled and pushed out of the region of soliton localization as the electrons evolve far away from their thermodynamic equilibrium.


2001 ◽  
Vol 280 (3) ◽  
pp. F396-F405 ◽  
Author(s):  
Maria Ohlson ◽  
Jenny Sörensson ◽  
Börje Haraldsson

We have analyzed glomerular sieving data from humans, rats in vivo, and from isolated perfused rat kidneys (IPK) and present a unifying hypothesis that seems to resolve most of the conflicting results that exist in the literature. Particularly important are the data obtained in the cooled IPK, because they allow a variety of experimental conditions for careful analysis of the glomerular barrier; conditions that never can be obtained in vivo. The data strongly support the classic concept of a negative charge barrier, but separate components seem to be responsible for charge and size selectivity. The new model is composed of a dynamic gel and a more static membrane layer. First, the charged gel structure close to the blood compartment has a charge density of 35–45 meq/l, reducing the concentration of albumin to 5–10% of that in plasma, due to ion-ion interactions. Second, the size-selective structure has numerous functional small pores (radius 45–50 Å) and far less frequent large pores (radius 75–115 Å), the latter accounting for 1% of the total hydraulic conductance. Both structures are required for the maintenance of an intact glomerular barrier.


2014 ◽  
Vol 80 (4) ◽  
pp. 629-641 ◽  
Author(s):  
Hitendra K. Malik ◽  
Rakhee Malik

An electron–positron pair plasma having dust impurity and density non-uniformity is studied for its unperturbed state and evolution of solitary structures under the effect of either positively charged or negatively charged dust grains. Zeroth-order equations are solved to examine the unperturbed state of the plasma via unperturbed potential φ0, drift velocities of the electrons and positrons (ve0 and vp0), and plasma (positron) density gradient np0η. It is observed that the dust distribution affects the gradient np0η significantly, which increases very sharply with a small increment in the dust density gradient nd0η. With relation to the solitary structures, a modified form of Korteweg–deVries equation (mKdV equation) is realized in the said plasma, which reveals that a tailing structure is associated with the soliton (sech2 structure). This tail is less prominent in the present pair plasma, contrary to the observation made in ordinary plasmas having only ions and electrons. The dust impurity is found to influence the solitary structure much significantly and its presence suppresses the rarefactive solitons, which are generally observed in multi-component species plasmas.


2013 ◽  
Vol 79 (6) ◽  
pp. 1117-1121 ◽  
Author(s):  
A. A. ABID ◽  
S. ALI ◽  
R. MUHAMMAD

AbstractDust charging processes involving the collection of electrons and positive/negative ions in a non-equilibrium dusty plasma are revisited by employing the power-law kappa (κ)-distribution function. In this context, the current balance equation is solved to obtain dust grain surface potential in the presence of negative ions. Numerically, it is found that plasma parameters, such as the κ spectral index, the negative ion-to-electron temperature ratio (γ), the negative–positive ion number density ratio (α), and the negative ion streaming speed (U0) significantly modify the dust grain potential profiles. In particular, for large kappa values, the dust grain surface potential reduces to the Maxwellian case, and at lower kappa values the magnitude of the negative dust surface potential increases. An increase in γ and U0 leads to the enhancement of the magnitude of the dust grain surface potential, while α leads to an opposite effect. The relevance of present results to low-temperature laboratory plasmas is discussed.


2000 ◽  
Vol 63 (3) ◽  
pp. 269-283 ◽  
Author(s):  
J. W. MANWEILER ◽  
T. P. ARMSTRONG ◽  
T. E. CRAVENS

We examine the charging of dielectric dust grains embedded in a plasma. Our work is a continuation and refinement of our previous research into grain charging problems. In 1993, we discussed preliminary simulation results regarding the charging and intergrain forces between two dielectric dust particles [J. W. Manweiler et al., Adv. Space Res. 13, 10175 (1993)]. Then, in 1996, we discussed preliminary results with respect to dust grain charging within asymmetric plasma conditions and how these affect grain–grain collisional cross-sections [J. W. Manweiler et al., In: The Physics of Dusty Plasmas (ed. P. K. Shukla et al.), p. 22. World Scientific, Singapore (1996)]. This work was extended to evaluate how asymmetric charging affects coagulation rates for dielectric dust grains [J. W. Manweiler et al., In: Physics of Dusty Plasmas, 7th Workshop (ed. M. Horanyi et al.), p. 12. AIP Conf. Proc. 446 (1998)]. Here we report on the results of a significant refinement to our work to study the behaviour of a dielectric dust grain in a plasma with a bulk flow. Since charge transport is inhibited on our dielectric grains, we can examine how asymmetric plasma distributions affect the symmetry of the charge distributions that develop on the surfaces of the grains. A dielectric dust grain in a flowing plasma develops a negative total charge and a dipole moment in its charge distribution that points upstream. We also use this model to study how the presence of a nearby dust grain affects the development of a grain's charge distribution. We demonstrate that a smaller grain–grain separation results in a reduced net charge on each grain. For grains in a flowing plasma, dipole moments are unaffected by close approach except when one grain is directly in the ‘wake’ of the other grain. The studies here show that monopole and dipole electrostatic forces are present when dust is bathed in flowing plasma. Recent infrared studies suggest that a large fraction of young stars have dusty envelopes [G. Schilling, Science286, 66 (1999)]. In the formation of accretion discs around young stars, dust–plasma interactions are probably important. Full details on the calculations of the results discussed in this paper are summarized from a more complete treatment of the subject by Manweiler [PhD Dissertation, University of Kansas (1997)].


2009 ◽  
Vol 16 (8) ◽  
pp. 083702 ◽  
Author(s):  
Mouloud Tribeche ◽  
Moufida Benzekka

2007 ◽  
Vol 73 (6) ◽  
pp. 901-910 ◽  
Author(s):  
LEILA AIT GOUGAM ◽  
MOULOUD TRIBECHE ◽  
FAWZIA MEKIDECHE

AbstractSmall-amplitude electrostatic solitary waves are investigated in unmagnetized dusty plasmas with variable charge resonant trapped dust particles. It is found that under certain conditions spatially localized structures, the height and nature of which depend sensitively on the plasma parameters, can exist. The effects of dust grain temperature, equilibrium dust charge, trapping parameter, and dust size on the properties of these solitary waves are briefly discussed. A neural network with a given architecture and learning process, and which may be useful to interpret experimental data, is outlined. Our investigation may be taken as a prerequisite for the understanding of the solitary dust waves that may occur in space as well as in laboratory plasmas.


Sign in / Sign up

Export Citation Format

Share Document