Hamiltonian formulation of direct laser acceleration in vacuum

2007 ◽  
Vol 73 (5) ◽  
pp. 635-647 ◽  
Author(s):  
M. ELOY ◽  
A. GUERREIRO ◽  
J. T. MENDONÇA ◽  
R. BINGHAM

AbstractWe present a new formulation for the direct laser acceleration of electrons in vacuum based on the Hamiltonian theory. Two different regimes for the snow-plowed, accelerated electrons are identified and characterized, the first pertaining to high-intensity and the second to low-intensity pulses, both leading to efficient electron acceleration. Particle energy yields are shown to be independent of the exact shape of the laser pulse and energy gains are estimated.

2016 ◽  
Vol 23 (2) ◽  
pp. 023111 ◽  
Author(s):  
A. V. Arefiev ◽  
V. N. Khudik ◽  
A. P. L. Robinson ◽  
G. Shvets ◽  
L. Willingale

2015 ◽  
Vol 81 (4) ◽  
Author(s):  
A. V. Arefiev ◽  
A. P. L. Robinson ◽  
V. N. Khudik

We examine the impact of several factors on electron acceleration by a laser pulse and the resulting electron energy gain. Specifically, we consider the role played by: (1) static longitudinal electric field, (2) static transverse electric field, (3) electron injection into the laser pulse, and (4) static longitudinal magnetic field. It is shown that all of these factors lead, under certain conditions, to a considerable electron energy gain from the laser pulse. In contrast with other mechanisms such as wakefield acceleration, the static electric fields in this case do not directly transfer substantial energy to the electron. Instead, they reduce the longitudinal dephasing between the electron and the laser beam, which then allows the electron to gain extra energy from the beam. The mechanisms discussed here are relevant to experiments with under-dense gas jets, as well as to experiments with solid-density targets involving an extended pre-plasma.


2017 ◽  
Vol 35 (2) ◽  
pp. 265-273 ◽  
Author(s):  
E. Khalilzadeh ◽  
A. Chakhmachi ◽  
J. Yazdanpanah

AbstractIn this paper, the electrons energy spectrum produced by stochastic acceleration in the interaction of an intense laser pulse with the underdense plasma is described by employing the fully kinetic 1D-3 V particle-in-cell simulation. In this way, two finite laser pulses with the same length 200 fs and with two different rise times 30 and 60 fs are typically selected. It is shown that the maximum energy of electrons in the laser pulse with the short rise time (30 fs) is about eight times greater than the maximum energy of the electrons with the long rise time (60 fs). Furthermore, unlike the pulse with the short rise time, the shape of energy spectrum and the electrons temperature in the long rise time laser pulse are approximately unchanged over the time. These results originated from the fact that in the case of long rise time laser pulse, all electrons are accelerated by the one chaotic mechanism because of the scattered fields generated in the plasma, but in the case of short rise time laser pulse, three different mechanisms accelerate the electrons: first, the stochastic acceleration because of the nonlinear wave breaking via plasma-vacuum boundary effect; second, the stochastic acceleration initiated by the wave breaking; and third, the direct laser acceleration of the released electrons.


2010 ◽  
Author(s):  
C. McGuinness ◽  
E. Colby ◽  
B. Cowan ◽  
R. J. England ◽  
J. Ng ◽  
...  

2019 ◽  
pp. 39-42
Author(s):  
V.I. Maslov ◽  
D.S. Bondar ◽  
V. Grigorencko ◽  
I.P. Levchuk ◽  
I.N. Onishchenko

At the laser acceleration of self-injected electron bunch by plasma wakefield it is important to form bunch with small energy spread and small size. It has been shown that laser-pulse shaping on radius, intensity and shape controls characteristics of the self-injected electron bunch and provides at certain shaping small energy spread and small size of self-injected and accelerated electron bunch.


2013 ◽  
Author(s):  
E. A. Peralta ◽  
E. Colby ◽  
R. J. England ◽  
C. McGuinness ◽  
B. Montazeri ◽  
...  

2019 ◽  
Vol 10 (01) ◽  
pp. 227-244
Author(s):  
Jonathan A. Wheeler ◽  
Gérard Mourou ◽  
Toshiki Tajima

With the advent of the Thin Film Compression, high energy single-cycled laser pulses have become an eminent path to the future of new high-field science. An existing CPA high power laser pulse such as a commercially available PW laser may be readily converted into a single-cycled laser pulse in the 10PW regime without losing much energy through the compression. We examine some of the scientific applications of this, such as laser ion accelerator called single-cycle laser acceleration (SCLA) and bow wake electron acceleration. Further, such a single-cycled laser pulse may be readily converted through relativistic compression into a single-cycled, X-ray laser pulse. We see that this is the quickest and very innovative way to ascend to the EW (exawatt) and zs (zeptosecond) science and technology. We suggest that such X-ray laser pulses have a broad and new horizon of applications. We have begun exploring the X-ray crystal (or nanostructured) wakefield accelerator and its broad and new applications into gamma rays. Here, we make a brief sketch of our survey of this vista of the new developments.


Sign in / Sign up

Export Citation Format

Share Document