A new electrostatic mode in a dusty plasma due to dust charge fluctuation

2009 ◽  
Vol 75 (3) ◽  
pp. 389-393 ◽  
Author(s):  
A. A. MAMUN

AbstractA dusty plasma consisting of cold and hot electrons, cold ions, and charge fluctuating isolated cold dust has been considered. It has been shown by a normal mode analysis that in such a dusty plasma there exists a new type of electrostatic perturbation mode due to the charge fluctuation of the isolated dust. The basic features of this new electrostatic perturbation mode, which are different from those of the electron-acoustic waves, have also been analytically identified. The implications of these results in both the space and laboratory dusty plasma conditions are briefly discussed.

1998 ◽  
Vol 51 (1) ◽  
pp. 95 ◽  
Author(s):  
Y. N. Nejoh

The effects of the dust charge fluctuation and ion temperature on large amplitude ion-acoustic waves are investigated in a plasma with a finite population of negatively charged dust particles, by numerical calculation. The nonlinear structures of ion-acoustic waves are examined, showing that the conditions for existence sensitively depend on the effects of the variable charge of dust grains and ion temperature, electrostatic potential and Mach number. The electrostatic potential on the surface of dust grain particles increases the dust charge number. The effect of the ion temperature increases the propagation speed of the ion-acoustic wave, and decreases the dust charge number. It is found that both compressive and rarefactive solitons can propagate in this system and the criterion for both solitons depends on the ion temperature. The region for existence of large amplitude ion-acoustic waves significantly depends on the dust charging. New findings of large amplitude ion-acoustic waves with variable charge dust grains and finite ion temperature in a dusty plasma are predicted.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 477-485 ◽  
Author(s):  
M. R. AMIN ◽  
SANJIT K. PAUL ◽  
GURUDAS MANDAL ◽  
A. A. MAMUN

AbstractThe nonlinear propagation of dust-acoustic (DA) waves in a dusty plasma consisting of Boltzmann-distributed ions, vortex-like distributed electrons and mobile charge fluctuating positive dust has been investigated by employing the reductive perturbation method. The effects of dust grain charge fluctuation and the vortex-like electron distribution are found to modify the properties of the DA solitary waves significantly. The implications of these results for some space and astrophysical dusty plasma systems are briefly mentioned.


2018 ◽  
Vol 5 (1) ◽  
pp. 20-23
Author(s):  
M Hasan ◽  
DMS Zaman

A rigorous theoretical investigation has been made on the linear propagation of electrostatic perturbation modes of degenerate pressure driven modified nucleus-acoustic (DPDMNA) ‘waves in a degenerate quantum plasma (DQP) system. It contains cold inertia-less degenerate electron species (DES), cold inertial non-degenerate light nucleus species (LNS) and stationary heavy nucleus species (HNS) which maintains the quasi-neutrality condition at equilibrium only. The mass density of the cold LNS provides the inertia and the cold inertia-less cold LNS provides the inertia and the cold inertia-less DES gives rise to the restoring force. The reductive perturbation method has been used for the study of nonlinear propagation of the DPDMNA waves. The basic features of linear waves are supervised in a theoretical manner. It has been observed that the phase speed of DPDMNA waves changes with the change of charge density of the stationary HNS for both non-relativistic and ultra-relativistic DES; The NA waves with their dispersion properties which are consequential in various astrophysical and laboratory plasmas, have been broadly considered. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 5(1), Dec 2018 P 20-23


2015 ◽  
Vol 81 (6) ◽  
Author(s):  
U. Zakir ◽  
Q. Haque ◽  
N. Imtiaz ◽  
A. Qamar

The properties of dust acoustic and drift waves are investigated in a charge varying magnetized dusty plasma. The plasma is composed of non-thermal electrons and ions with dynamic dust particles. The mathematical expression which describes the dust charge fluctuation is obtained using ${\it\kappa}$-distribution for both the electrons and ions. A dispersion relation is derived and analysed numerically by choosing space plasma parameters. It is found that the inclusion of variable dust charge along with the non-thermal effects of electrons and ions significantly affect linear/nonlinear properties of the dust acoustic and dust drift waves. The effects of different physical parameters including spectral index (${\it\kappa}$), dust charge number ($Z_{d}$), electron density ($n_{e}$) and ion temperature ($T_{i}$) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn’s magnetosphere.


Sign in / Sign up

Export Citation Format

Share Document