scholarly journals Linear Nuclear Acoustic Waves in Degenerate Quantum Plasma

2018 ◽  
Vol 5 (1) ◽  
pp. 20-23
Author(s):  
M Hasan ◽  
DMS Zaman

A rigorous theoretical investigation has been made on the linear propagation of electrostatic perturbation modes of degenerate pressure driven modified nucleus-acoustic (DPDMNA) ‘waves in a degenerate quantum plasma (DQP) system. It contains cold inertia-less degenerate electron species (DES), cold inertial non-degenerate light nucleus species (LNS) and stationary heavy nucleus species (HNS) which maintains the quasi-neutrality condition at equilibrium only. The mass density of the cold LNS provides the inertia and the cold inertia-less cold LNS provides the inertia and the cold inertia-less DES gives rise to the restoring force. The reductive perturbation method has been used for the study of nonlinear propagation of the DPDMNA waves. The basic features of linear waves are supervised in a theoretical manner. It has been observed that the phase speed of DPDMNA waves changes with the change of charge density of the stationary HNS for both non-relativistic and ultra-relativistic DES; The NA waves with their dispersion properties which are consequential in various astrophysical and laboratory plasmas, have been broadly considered. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 5(1), Dec 2018 P 20-23

2012 ◽  
Vol 79 (1) ◽  
pp. 65-68 ◽  
Author(s):  
M. S. ZOBAER ◽  
N. ROY ◽  
A. A. MAMUN

AbstractA theoretical investigation on the nonlinear propagation of ion-acoustic waves in a degenerate dense plasma has been made by employing the reductive perturbation method. The Burger's equation has been derived, and numerically analyzed. The basic features of electrostatic shock structures have been examined. It has been shown that the plasma system under consideration supports the propagation of electrostatic shock structures. The implications of our results (obtained from this investigation) in compact astrophysical objects have been briefly discussed.


2020 ◽  
Vol 38 (1) ◽  
pp. 25-38
Author(s):  
J. Goswami ◽  
S. Chandra ◽  
J. Sarkar ◽  
S. Chaudhuri ◽  
B. Ghosh

AbstractThe theoretical investigation of shocks and solitary structures in a dense quantum plasma containing electrons at finite temperature, nondegenerate cold electrons, and stationary ions has been carried out. A linear dispersion relation is derived for the corresponding electron acoustic waves. The solitary structures of small nonlinearity have been studied by using the standard reductive perturbation method. We have considered collisions to be absent, and the shocks arise out of viscous force. Furthermore, with the help of a standard reductive perturbation technique, a KdV–Burger equation has been derived and analyzed numerically. Under limiting cases, we have also obtained the KdV solitary profiles and studied the parametric dependence. The results are important in explaining the many phenomena of the laser–plasma interaction of dense plasma showing quantum effects.


2011 ◽  
Vol 78 (2) ◽  
pp. 125-131 ◽  
Author(s):  
M. ASADUZZAMAN ◽  
A. A. MAMUN

AbstractThe nonlinear propagation characteristics of Gardner solitons (GSs) in a non-planar (cylindrical and spherical) two-ion-temperature unmagnetized dusty plasma, whose constituents are inertial negative dust, Boltzmann electrons and ions with two distinctive temperatures, are investigated by deriving the modified Gardner (mG) equation. The standard reductive perturbation method is employed to derive the mG equation. The basic features of non-planar dust-acoustic (DA) GSs are analyzed. It has been found that the basic characteristics of GSs, which are shown to exist for the values of ni10/Zdnd0 around 0.311, for ni20/Zdnd0 = 0.5, Ti1/Te = 0.07, and Ti1/Ti2 = 0.05 [where ni10 (ni20) is the lower (higher) temperature ion number density at equilibrium, Ti1 (Ti2) is the lower (higher) temperature of ions, Te is the electron temperature, Zd is the number of electrons residing on the dust grain surface, and nd0 is the equilibrium dust number density] are different from those of Korteweg-de Vries solitons, which do not exist around ni10/Zdnd0 ≃ 0.311. It has been found that the propagation characteristics of non-planar DA GSs significantly differ from those of planar ones.


2009 ◽  
Vol 75 (3) ◽  
pp. 389-393 ◽  
Author(s):  
A. A. MAMUN

AbstractA dusty plasma consisting of cold and hot electrons, cold ions, and charge fluctuating isolated cold dust has been considered. It has been shown by a normal mode analysis that in such a dusty plasma there exists a new type of electrostatic perturbation mode due to the charge fluctuation of the isolated dust. The basic features of this new electrostatic perturbation mode, which are different from those of the electron-acoustic waves, have also been analytically identified. The implications of these results in both the space and laboratory dusty plasma conditions are briefly discussed.


2009 ◽  
Vol 66 (9) ◽  
pp. 2937-2945 ◽  
Author(s):  
Mark D. Fruman

Abstract Meridionally confined zonally propagating wave solutions to the linear hydrostatic Boussinesq equations on a generalized equatorial β plane that includes the “nontraditional” Coriolis force terms associated with the poleward component of planetary rotation are calculated. Kelvin, Rossby, inertia–gravity, and mixed Rossby–gravity modes generalize from the traditional model with the dispersion relation unchanged. The effects of the nontraditional terms on all waves are the curving upward with latitude of the surfaces of constant phase and the equatorial trapping width of the solutions (the equatorial radius of deformation) increasing by order (Ω/N)2 compared to the traditional case, where Ω is the planetary rotation rate and N the buoyancy frequency. In addition, for the Rossby, inertia–gravity, and mixed Rossby–gravity modes, there is a phase shift of O(Ω/N) in the zonal and vertical velocity components relative to the meridional component, and their spatial structures are further modified by differences of O(Ω/N)2. For the Rossby and inertia–gravity waves, the modifications depend also on the phase speed of the wave. In the limit N ≫ Ω, the traditional approximation is justified and lines of constant phase in the y–z plane become horizontal, whereas for N ≪ Ω phase lines become everywhere almost parallel to the planetary rotation vector. In both limits, the phase lines are perpendicular to the dominant restoring force—respectively, gravity and the centrifugal force associated with the solid-body rotation of the atmosphere at rest in the rotating frame.


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
M. G. Shah ◽  
M. R. Hossen ◽  
A. A. Mamun

The nonlinear propagation of positron-acoustic waves (PAWs) in an unmagnetized, collisionless, four component, dense plasma system (containing non-relativistic inertial cold positrons, relativistic degenerate electron and hot positron fluids as well as positively charged immobile ions) has been investigated theoretically. The Korteweg–de Vries (K–dV), modified K–dV (mK–dV) and further mK–dV (fmK–dV) equations have been derived by using reductive perturbation technique. Their solitary wave solutions have been numerically analysed in order to understand the localized electrostatic disturbances. It is observed that the relativistic effect plays a pivotal role on the propagation of positron-acoustic solitary waves (PASW). It is also observed that the effects of degenerate pressure and the number density of inertial cold positrons, hot positrons, electrons and positively charged static ions significantly modify the fundamental features of PASW. The basic features and the underlying physics of PASW, which are relevant to some astrophysical compact objects (such as white dwarfs, neutron stars etc.), are concisely discussed.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
A. A. Mamun ◽  
J. Akter

A warm degenerate plasma (containing ultra-relativistically or non-relativistically warm degenerate inertia-less electron species, non-relativistically warm degenerate inertial light nucleus species and stationary heavy nucleus species) is considered. The basic features of planar and non-planar solitary structures associated with the degenerate pressure-driven nucleus-acoustic waves propagating in such a warm degenerate plasma system are investigated. The reductive perturbation method, which is valid for small- but finite-amplitude solitary waves, is used. It is found that the effects of non-planar cylindrical and spherical geometries, non- and ultra-relativistically degenerate electron species and the temperature of degenerate electron species significantly modify the basic features (i.e. speed, amplitude and width) of the solitary potential structures associated with degenerate pressure-driven nucleus-acoustic waves. The warm degenerate plasma model under consideration is applicable not only to all cold white dwarfs, but also to many hot white dwarfs, such as DQ white dwarfs, white dwarf H1504+65, white dwarf PG 0948+534, etc.


2011 ◽  
Vol 89 (10) ◽  
pp. 1073-1078 ◽  
Author(s):  
Hamid Reza Pakzad

The reductive perturbation method is used to derive the Kordeweg – de Vries – Burgers equation in strongly coupled dusty plasmas containing Boltzmann distributed ions and q-nonextensive electrons. It is observed that the nonlinear propagation of the dust acoustic waves gives rise to shock structures when there is strong correlation among the dust grains. The effect of the q-nonextensive parameter on the shock waves is discussed.


1982 ◽  
Vol 60 (4) ◽  
pp. 392-396 ◽  
Author(s):  
M. K. Kalita ◽  
S. Bujarbarua

Considering the electron velocity distribution far from Maxwellian, we have investigated the nonlinear propagation of ion acoustic waves in a plasma consisting of warm ions. The solitary wave solution has been obtained for this case retaining terms up to the third order in the usual reductive perturbation method.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
M. G. Hafez ◽  
M. R. Talukder ◽  
M. Hossain Ali

Two-dimensional three-component plasma system consisting of nonextensive electrons, positrons, and relativistic thermal ions is considered. The well-known Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili equations are derived to study the basic characteristics of small but finite amplitude ion acoustic waves of the plasmas by using the reductive perturbation method. The influences of positron concentration, electron-positron and ion-electron temperature ratios, strength of electron and positrons nonextensivity, and relativistic streaming factor on the propagation of ion acoustic waves in the plasmas are investigated. It is revealed that the electrostatic compressive and rarefactive ion acoustic waves are obtained for superthermal electrons and positrons, but only compressive ion acoustic waves are found and the potential profiles become steeper in case of subthermal positrons and electrons.


Sign in / Sign up

Export Citation Format

Share Document