Electrostatic solitary waves and double layers in a non-extensive dusty plasma with arbitrarily charged dust

2013 ◽  
Vol 79 (5) ◽  
pp. 635-640 ◽  
Author(s):  
H. ALINEJAD ◽  
M. TRIBECHE

AbstractThe nonlinear propagation of dust ion-acoustic (DIA) solitary waves (SWs) as well as double layers (DLs) in a dusty plasma containing warm adiabatic ions, non-extensive electrons, and arbitrarily (positively or negatively) charged immobile dust are studied. Based on the energy-like integral equation, a new relationship between the localized electrostatic disturbances and dust polarity in the non-extensive dusty plasma is derived. It is shown that the effect of electron non-extensivity, in contrast to the influence of extensive electrons, is destructive for the formation of the SWs and DLs. It is also found that the negative (positive) dust number density raises (reduces) the possibility for the formation of these localized states.

2012 ◽  
Vol 342 (2) ◽  
pp. 449-456 ◽  
Author(s):  
Uday Narayan Ghosh ◽  
Deb Kumar Ghosh ◽  
Prasanta Chatterjee ◽  
Biswajit Sahu

2015 ◽  
Vol 30 (40) ◽  
pp. 1550216 ◽  
Author(s):  
O. Rahman

The nonlinear propagation of dust-ion-acoustic (DIA) solitary waves (SWs) in an unmagnetized four-component dusty plasma containing electrons and negative ions obeying vortex-like (trapped) velocity distribution, cold mobile positive ions and arbitrarily charged stationary dust has been theoretically investigated. The properties of small but finite amplitude DIASWs are studied by employing the reductive perturbation technique. It has been found that owing to the departure from the Maxwellian electron and Maxwellian negative ion distribution to a vortex-like one, the dynamics of such DIASWs is governed by a modified Korteweg–de Vries (mKdV) equation which admits SW solution under certain conditions. The basic properties (speed, amplitude, width, etc.) of such DIASWs are found to be significantly modified by the presence of trapped electron and trapped negative ions. The implications of our results to space and laboratory dusty electronegative plasmas (DENPs) are briefly discussed.


2013 ◽  
Vol 79 (5) ◽  
pp. 691-698 ◽  
Author(s):  
PRASANTA CHATTERJEE ◽  
DEB KUMAR GHOSH ◽  
UDAY NARAYAN GHOSH ◽  
BISWAJIT SAHU

AbstractThe properties of non-planar (cylindrical and spherical) dust-acoustic solitary waves (DA SWs) and double layers (DLs) in an unmagnetised collisionless four-component dusty plasma, whose constituents are positively and negatively charged dust grains, super thermal electrons and Boltzmannian ions are investigated by deriving the modified Gardner (MG) equation. The well known reductive perturbation method is employed to derive the MG equation and solve it numerically to study the nonlinear features of the finite amplitude non-planar DA Gardner solitons (GSs) and DLs, which are shown to exist for κ around its critical value κc (where, κ is the super thermal parameter and κc is the value of κ corresponding to the vanishing of the nonlinear coefficient of the Korteweg-de Vries (K-dV) equation). It is seen that the properties of non-planar DA SWs and DLs are significantly differs in non-planar geometry from planar geometry. It is also found that the magnitude of the amplitude of positive and negative GSs decreases with κ and the width of positive and negative GSs increases with the increase of κ.


2012 ◽  
Vol 78 (6) ◽  
pp. 677-681 ◽  
Author(s):  
N. R. KUNDU ◽  
A. A. MAMUN

AbstractThe dust-ion-acoustic solitary waves (DIA SWs) in an unmagnetized dusty plasma containing non-thermal electrons, cold mobile positive ions, and stationary arbitrarily (positively and negatively) charged static dust have been theoretically studied. The reductive perturbation technique has been employed to derive the Korteweg-de Vries equation, which admits SW solutions under certain conditions. It has been also shown that the basic features (amplitude, width, speed, etc.) of DIA SWs are significantly modified by the polarity of dust and non-thermal electrons. The implications of our results in space and laboratory dusty plasma situations are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document