scholarly journals Phase mixing importance for both Landau instability and damping

2017 ◽  
Vol 83 (1) ◽  
Author(s):  
D. D. A. Santos ◽  
Yves Elskens

We discuss the self-consistent dynamics of plasmas by means of a Hamiltonian formalism for a system of $N$ near-resonant electrons interacting with a single Langmuir wave. The connection with the Vlasov description is revisited through the numerical calculation of the van Kampen-like eigenfrequencies of the linearized dynamics for many degrees of freedom. Both the exponential-like growth as well as damping of the Langmuir wave are shown to emerge from a phase mixing effect among beam modes, revealing unexpected similarities between the stable and unstable regimes.

1993 ◽  
Vol 49 (1) ◽  
pp. 41-50
Author(s):  
F. B. Rizzato

We use a Hamiltonian formalism to analyse the self-consistent wave–particle dynamical interaction involving magnetized electrons and ordinarily polarized electromagnetic waves. Considering first-harmonic cyclotron resonances, we show that there is a critical value of the electronic average density. For systems with lower than critical densities the saturation process is dictated by relativistic detuning effects, and wave dynamics may be disregarded. However, for systems with larger densities, saturation is governed by the available electromagnetic free energy, and the wave dynamics turns out to be essential.


1992 ◽  
Vol 47 (2) ◽  
pp. 235-248 ◽  
Author(s):  
V. L. Krasovsky

The propagation of a Langmuir wave with a small group of trapped particles in a weakly non-uniform plasma along a density gradient is considered. The dynamics of trapped electrons accelerated by the wave is investigated in the adiabatic approximation, including the relativistic case. The set of equations describing the self-consistent spatial evolution of the wave—trapped-particles system is obtained and analysed. It is shown that the possibility exists of wave transmission through a classically forbidden barrier as a consequence of the reversibility of the wave—particle interaction. The conditions of validity of the theory developed are also discussed.


2007 ◽  
Vol 21 (06) ◽  
pp. 773-827 ◽  
Author(s):  
ZHENG-YU WENG

The recent developments of the phase string theory for doped antiferromagnets will be briefly reviewed. Such theory is built upon a singular phase string effect induced by the motion of holes in a doped antiferromagnet, which as a precise property of the t-J model dictates the novel competition between the charge and spin degrees of freedom. A global phase diagram including the antiferromagnetic, superconducting, lower and upper pseudogap, and high-temperature "normal" phases, as well as a series of anomalous physical properties of these phases will be presented as the self-consistent and systematic consequences of the phase string theory.


1—The method of the self-consistent field for determining the wave functions and energy levels of an atom with many electrons was developed by Hartree, and later derived from a variation principle and modified to take account of exchange and of Pauli’s exclusion principle by Slater* and Fock. No attempt was made to consider relativity effects, and the use of “ spin ” wave functions was purely formal. Since, in the solution of Dirac’s equation for a hydrogen-like atom of nuclear charge Z, the difference of the radial wave functions from the solutions of Schrodinger’s equation depends on the ratio Z/137, it appears that for heavy atoms the relativity correction will be of importance; in fact, it may in some cases be of more importance as a modification of Hartree’s original self-nsistent field equation than “ exchange ” effects. The relativistic self-consistent field equation neglecting “ exchange ” terms can be formed from Dirac’s equation by a method completely analogous to Hartree’s original derivation of the non-relativistic self-consistent field equation from Schrodinger’s equation. Here we are concerned with including both relativity and “ exchange ” effects and we show how Slater’s varia-tional method may be extended for this purpose. A difficulty arises in considering the relativistic theory of any problem concerning more than one electron since the correct wave equation for such a system is not known. Formulae have been given for the inter-action energy of two electrons, taking account of magnetic interactions and retardation, by Gaunt, Breit, and others. Since, however, none of these is to be regarded as exact, in the present paper the crude electrostatic expression for the potential energy will be used. The neglect of the magnetic interactions is not likely to lead to any great error for an atom consisting mainly of closed groups, since the magnetic field of a closed group vanishes. Also, since the self-consistent field type of approximation is concerned with the interaction of average distributions of electrons in one-electron wave functions, it seems probable that retardation does not play an important part. These effects are in any case likely to be of less importance than the improvement in the grouping of the wave functions which arises from using a wave equation which involves the spins implicitly.


Sign in / Sign up

Export Citation Format

Share Document