scholarly journals Large-amplitude acoustic solitary waves in a Yukawa chain

2017 ◽  
Vol 83 (3) ◽  
Author(s):  
T. E. Sheridan ◽  
James C. Gallagher

We experimentally study the excitation and propagation of acoustic solitary waves in a one-dimensional dusty plasma (i.e. a Yukawa chain) with $n=65$ particles interacting through a screened Coulomb potential. The lattice constant $a=1.02\pm 0.02$ mm. Waves are launched by applying a 100 mW laser pulse to one end of the chain for laser pulse durations from 0.10 to 2.0 s. We observe damped solitary waves which propagate for distances ${\gtrsim}30a$ with an acoustic speed $c_{s}=11.5\pm 0.2~\text{mm}~\text{s}^{-1}$. The maximum velocity perturbation increases with laser pulse duration for durations ${\leqslant}0.5$ s and then saturates at ${\approx}15\,\%$. The wave speed is found to be independent of the maximum amplitude, indicating that the formation of nonlinear solitons is prevented by neutral-gas damping.

1997 ◽  
Vol 335 ◽  
pp. 165-188 ◽  
Author(s):  
ALFONSO M. GAÑÁN-CALVO

Electrohydrodynamically (EHD) driven capillary jets are analysed in this work in the parametrical limit of negligible charge relaxation effects, i.e. when the electric relaxation time of the liquid is small compared to the hydrodynamic times. This regime can be found in the electrospraying of liquids when Taylor's charged capillary jets are formed in a steady regime. A quasi-one-dimensional EHD model comprising temporal balance equations of mass, momentum, charge, the capillary balance across the surface, and the inner and outer electric fields equations is presented. The steady forms of the temporal equations take into account surface charge convection as well as Ohmic bulk conduction, inner and outer electric field equations, momentum and pressure balances. Other existing models are also compared. The propagation speed of surface disturbances is obtained using classical techniques. It is shown here that, in contrast with previous models, surface charge convection provokes a difference between the upstream and the downstream wave speed values, the upstream wave speed, to some extent, being delayed. Subcritical, supercritical and convectively unstable regions are then identified. The supercritical nature of the microjets emitted from Taylor's cones is highlighted, and the point where the jet switches from a stable to a convectively unstable regime (i.e. where the propagation speed of perturbations become zero) is identified. The electric current carried by those jets is an eigenvalue of the problem, almost independent of the boundary conditions downstream, in an analogous way to the gas flow in convergent–divergent nozzles exiting into very low pressure. The EHD model is applied to an experiment and the relevant physical quantities of the phenomenon are obtained. The EHD hypotheses of the model are then checked and confirmed within the limits of the one-dimensional assumptions.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammad H. Jabbari ◽  
Parviz Ghadimi ◽  
Ali Masoudi ◽  
Mohammad R. Baradaran

Using one-dimensional Beji & Nadaoka extended Boussinesq equation, a numerical study of solitary waves over submerged breakwaters has been conducted. Two different obstacles of rectangular as well as circular geometries over the seabed inside a channel have been considered in view of solitary waves passing by. Since these bars possess sharp vertical edges, they cannot directly be modeled by Boussinesq equations. Thus, sharply sloped lines over a short span have replaced the vertical sides, and the interactions of waves including reflection, transmission, and dispersion over the seabed with circular and rectangular shapes during the propagation have been investigated. In this numerical simulation, finite element scheme has been used for spatial discretization. Linear elements along with linear interpolation functions have been utilized for velocity components and the water surface elevation. For time integration, a fourth-order Adams-Bashforth-Moulton predictor-corrector method has been applied. Results indicate that neglecting the vertical edges and ignoring the vortex shedding would have minimal effect on the propagating waves and reflected waves with weak nonlinearity.


A general method is presented for the exact treatment of analytical problems that have solutions representing solitary waves. The theoretical framework of the method is developed in abstract first, providing a range of fixed-point theorems and other useful resources. It is largely based on topological concepts, in particular the fixed-point index for compact mappings, and uses a version of positive-operator theory referred to Frechet spaces. Then three exemplary problems are treated in which steadily propagating waves of permanent form are known to be represented. The first covers a class of one-dimensional model equations that generalizes the classic Korteweg—de Vries equation. The second concerns two-dimensional wave motions in an incompressible but density-stratified heavy fluid. The third problem describes solitary waves on water in a uniform canal.


Author(s):  
Andrew Lehmann ◽  
Mark Wardle

AbstractWe characterise steady, one-dimensional fast and slow magnetohydrodynamic (MHD) shocks using a two-fluid model. Fast MHD shocks are magnetically driven, forcing ions to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs=2–4 km/s and preshock Hydrogen nuclei densities nH = 102-4 cm−3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of 12CO rotational lines show that high-J lines, above J = 6 → 5, are more strongly excited in slow MHD shocks.


2008 ◽  
Vol 78 (4) ◽  
Author(s):  
Milutin Stepić ◽  
Aleksandra Maluckov ◽  
Marija Stojanović ◽  
Feng Chen ◽  
Detlef Kip

1996 ◽  
Vol 53 (1) ◽  
pp. 1138-1141 ◽  
Author(s):  
Roland Schiek ◽  
Yongsoon Baek ◽  
George I. Stegeman

2001 ◽  
Vol 18 (8) ◽  
pp. 1050-1052 ◽  
Author(s):  
Qu Wei-Xing ◽  
Xia Yu-Xing ◽  
Gan Ming-Long ◽  
Li Ru-Xin ◽  
Xu Zhi-Zhan

Sign in / Sign up

Export Citation Format

Share Document