gas damping
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2566
Author(s):  
Boris A. Boom ◽  
Alessandro Bertolini ◽  
Eric Hennes ◽  
Johannes F. J. van den Brand

We present a novel analysis of gas damping in capacitive MEMS transducers that is based on a simple analytical model, assisted by Monte-Carlo simulations performed in Molflow+ to obtain an estimate for the geometry dependent gas diffusion time. This combination provides results with minimal computational expense and through freely available software, as well as insight into how the gas damping depends on the transducer geometry in the molecular flow regime. The results can be used to predict damping for arbitrary gas mixtures. The analysis was verified by experimental results for both air and helium atmospheres and matches these data to within 15% over a wide range of pressures.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 883
Author(s):  
Thilo Sandner ◽  
Eric Gaumont ◽  
Thomas Graßhoff ◽  
Andreas Rieck ◽  
Tobias Seifert ◽  
...  

We present a wafer-level vacuum-packaged (WLVP) translatory micro-electro-mechanical system (MEMS) actuator developed for a compact near-infrared-Fourier transform spectrometer (NIR-FTS) with 800–2500 nm spectral bandwidth and signal-nose-ratio (SNR) > 1000 in the smaller bandwidth range (1200–2500 nm) for 1 s measuring time. Although monolithic, highly miniaturized MEMS NIR-FTSs exist today, we follow a classical optical FT instrumentation using a resonant MEMS mirror of 5 mm diameter with precise out-of-plane translatory oscillation for optical path-length modulation. Compared to highly miniaturized MEMS NIR-FTS, the present concept features higher optical throughput and resolution, as well as mechanical robustness and insensitivity to vibration and mechanical shock, compared to conventional FTS mirror drives. The large-stroke MEMS design uses a fully symmetrical four-pantograph suspension, avoiding problems with tilting and parasitic modes. Due to significant gas damping, a permanent vacuum of ≤3.21 Pa is required. Therefore, an MEMS design with WLVP optimization for the NIR spectral range with minimized static and dynamic mirror deformation of ≤100 nm was developed. For hermetic sealing, glass-frit bonding at elevated process temperatures of 430–440 °C was used to ensure compatibility with a qualified MEMS processes. Finally, a WLVP MEMS with a vacuum pressure of ≤0.15 Pa and Q ≥ 38,600 was realized, resulting in a stroke of 700 µm at 267 Hz for driving at 4 V in parametric resonance. The long-term stability of the 0.2 Pa interior vacuum was successfully tested using a Ne fine-leakage test and resulted in an estimated lifetime of >10 years. This meets the requirements of a compact NIR-FTS.


2020 ◽  
Vol 37 (20) ◽  
pp. 205008
Author(s):  
Jun Ke ◽  
Jie Luo ◽  
Yu-Jie Tan ◽  
Cheng-Gang Shao

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 626
Author(s):  
Feng Xu ◽  
Yuliang Wei ◽  
Shiyuan Bian ◽  
Huanqin Wang ◽  
Da-Ren Chen ◽  
...  

Micro-Cantilever (MCL) is a thin film structure that is applied for aerosol particle mass sensing. Several modifications to the rectangular MCL (length-to-width ratio, slots at the anchor, serrations at its side edges) are made to deduce the role and influence of the shape of rectangular MCL-based aerosol mass sensors and reduce gas damping. A finite element fluid-structure interaction model was used to investigate the performance of MCL. It is found that (I) the mass sensitivity and quality factor decline with the increasing of length-to-width ratio which alters the resonant frequency of the MCL. The optimum conditions, including the length-to-width ratio (σlw = 5) and resonant frequency (f0 = 540.7 kHz) of the MCL, are obtained with the constant surface area (S = 45,000 μm2) in the frequency domain ranging from 0 to 600 kHz. (II) The slots can enhance the read-out signal and bring a small Q factor drop. (III) The edge serrations on MCL significantly reduce the gas damping. The results provide a reference for the design of aerosol mass sensor, which makes it possible to develop aerosol mass sensor with high frequency, sensitivity, and quality.


2019 ◽  
Vol 14 (4) ◽  
Author(s):  
Xiaorui Fu ◽  
Lizhong Xu

In this paper, a dynamics model of a microresonant gas sensor under multifields forces is proposed in which molecular force nonlinearity, gas damping force nonlinearity, and electric field force nonlinearity are considered. The coupled free vibration and forced response of the microsensor are studied. Here, Leibniz–Poincare (L–P) method is used to obtain the natural frequency of microsensor, the time-forced response, and the amplitude–frequency characteristics. Effects of these nonlinearities on the dynamics performance of the microresonant gas sensor are analyzed. The microresonant gas sensor is fabricated, and the frequency measurement of the sensor based on the phase-locked loop is done to illustrate the theoretical analysis. The results are significant for the further miniaturization of resonant gas sensors.


2017 ◽  
Author(s):  
J. Toledo ◽  
V. Ruiz-Díez ◽  
P. Schwarz ◽  
H. Seidel ◽  
J. L. Sánchez-Rojas

2017 ◽  
Vol 26 (3) ◽  
pp. 632-642 ◽  
Author(s):  
Patrick Fedeli ◽  
Attilio Frangi ◽  
Giacomo Laghi ◽  
Giacomo Langfelder ◽  
Gabriele Gattere

2017 ◽  
Vol 83 (3) ◽  
Author(s):  
T. E. Sheridan ◽  
James C. Gallagher

We experimentally study the excitation and propagation of acoustic solitary waves in a one-dimensional dusty plasma (i.e. a Yukawa chain) with $n=65$ particles interacting through a screened Coulomb potential. The lattice constant $a=1.02\pm 0.02$ mm. Waves are launched by applying a 100 mW laser pulse to one end of the chain for laser pulse durations from 0.10 to 2.0 s. We observe damped solitary waves which propagate for distances ${\gtrsim}30a$ with an acoustic speed $c_{s}=11.5\pm 0.2~\text{mm}~\text{s}^{-1}$. The maximum velocity perturbation increases with laser pulse duration for durations ${\leqslant}0.5$ s and then saturates at ${\approx}15\,\%$. The wave speed is found to be independent of the maximum amplitude, indicating that the formation of nonlinear solitons is prevented by neutral-gas damping.


Sign in / Sign up

Export Citation Format

Share Document