scholarly journals Energy cascade rate in isothermal compressible magnetohydrodynamic turbulence

2018 ◽  
Vol 84 (4) ◽  
Author(s):  
N. Andrés ◽  
F. Sahraoui ◽  
S. Galtier ◽  
L. Z. Hadid ◽  
P. Dmitruk ◽  
...  

Three-dimensional direct numerical simulations are used to study the energy cascade rate in isothermal compressible magnetohydrodynamic turbulence. Our analysis is guided by a two-point exact law derived recently for this problem in which flux, source, hybrid and mixed terms are present. The relative importance of each term is studied for different initial subsonic Mach numbers$M_{S}$and different magnetic guide fields$\boldsymbol{B}_{0}$. The dominant contribution to the energy cascade rate comes from the compressible flux, which depends weakly on the magnetic guide field$\boldsymbol{B}_{0}$, unlike the other terms whose moduli increase significantly with$M_{S}$and$\boldsymbol{B}_{0}$. In particular, for strong$\boldsymbol{B}_{0}$the source and hybrid terms are dominant at small scales with almost the same amplitude but with a different sign. A statistical analysis undertaken with an isotropic decomposition based on the SO(3) rotation group is shown to generate spurious results in the presence of$\boldsymbol{B}_{0}$, when compared with an axisymmetric decomposition better suited to the geometry of the problem. Our numerical results are compared with previous analyses made within situmeasurements in the solar wind and the terrestrial magnetosheath.

2021 ◽  
Vol 923 (1) ◽  
pp. 122
Author(s):  
R. Ferrand ◽  
F. Sahraoui ◽  
D. Laveder ◽  
T. Passot ◽  
P. L. Sulem ◽  
...  

Abstract Using an exact law for incompressible Hall magnetohydrodynamics (HMHD) turbulence, the energy cascade rate is computed from three-dimensional HMHD-CGL (biadiabatic ions and isothermal electrons) and Landau-fluid numerical simulations that feature different intensities of Landau damping over a broad range of wavenumbers, typically 0.05 ≲ k ⊥ d i ≲ 100. Using three sets of cross-scale simulations where turbulence is initiated at large, medium, and small scales, the ability of the fluid energy cascade to “sense” the kinetic Landau damping at different scales is tested. The cascade rate estimated from the exact law and the dissipation calculated directly from the simulation are shown to reflect the role of Landau damping in dissipating energy at all scales, with an emphasis on the kinetic ones. This result provides new prospects on using exact laws for simplified fluid models to analyze dissipation in kinetic simulations and spacecraft observations, and new insights into theoretical description of collisionless magnetized plasmas.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


Author(s):  
W.F. Marshall ◽  
A.F. Dernburg ◽  
B. Harmon ◽  
J.W. Sedat

Interactions between chromatin and nuclear envelope (NE) have been implicated in chromatin condensation, gene regulation, nuclear reassembly, and organization of chromosomes within the nucleus. To further investigate the physiological role played by such interactions, it will be necessary to determine which loci specifically interact with the nuclear envelope. This will not only facilitate identification of the molecular determinants of this interaction, but will also allow manipulation of the pattern of chromatin-NE interactions to probe possible functions. We have developed a microscopic approach to detect and map chromatin-NE interactions inside intact cells.Fluorescence in situ hybridization (FISH) is used to localize specific chromosomal regions within the nucleus of Drosophila embryos and anti-lamin immunofluorescence is used to detect the nuclear envelope. Widefield deconvolution microscopy is then used to obtain a three-dimensional image of the sample (Fig. 1). The nuclear surface is represented by a surface-harmonic expansion (Fig 2). A statistical test for association of the FISH spot with the surface is then performed.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


1982 ◽  
Vol 14 (3) ◽  
pp. 33-39
Author(s):  
C Y Kuo

An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the far-field transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, vertical and horizontal diffusion coefficients, particle size distributions, and specific gravities. Concentrations of the sludge near the sea surface predicted from the computer model were compared qualitatively with those remotely sensed.


Sign in / Sign up

Export Citation Format

Share Document