scholarly journals Anomalous losses of energetic particles in the presence of an oscillating radial electric field in fusion plasmas

2020 ◽  
Vol 86 (2) ◽  
Author(s):  
David Zarzoso ◽  
Diego del-Castillo-Negrete

The confinement of energetic particles in nuclear fusion devices is studied in the presence of an oscillating radial electric field and an axisymmetric magnetic equilibrium. It is shown that, despite the poloidal and toroidal symmetries, initially integrable orbits turn into chaotic regions that can potentially intercept the wall of the tokamak, leading to particle losses. It is observed that the losses exhibit algebraic time decay different from the expected exponential decay characteristic of radial diffusive transport. A dynamical explanation of this behaviour is presented, within the continuous time random walk theory. The central point of the analysis is based on the fact that, contrary to the radial displacement, the poloidal angle is not bounded and a proper statistical analysis can therefore be made, showing for the first time that energetic particle transport can be super-diffusive in the poloidal direction and characterised by asymmetric poloidal displacement. The connection between poloidal and radial positions ensured by the conservation of the toroidal canonical momentum, implies that energetic particles spend statistically more time in the inner region of the tokamak than in the outer one, which explains the observed algebraic decay. This indicates that energetic particles might be efficiently slowed down by the thermal population before leaving the system. Also, the asymmetric transport reveals a new possible mechanism of self-generation of momentum.

1993 ◽  
Vol 49 (1) ◽  
pp. 125-159 ◽  
Author(s):  
Michael L. Goodman

A cylindrically symmetric, electrically driven, dissipative, energy-conserving magnetohydrodynamic equilibrium model is considered. The high-magneticfield Braginskii ion thermal conductivity perpendicular to the local magnetic field and the complete electron resistivity tensor are included in an energy equation and in Ohm's law. The expressions for the resistivity tensor and thermal conductivity depend on number density, temperature, and the poloidal and axial (z-component) magnetic field, which are functions of radius that are obtained as part of the equilibrium solution. The model has plasma-confining solutions, by which is meant solutions characterized by the separation of the plasma into two concentric regions separated by a transition region that is an internal boundary layer. The inner region is the region of confined plasma, and the outer region is the region of unconfined plasma. The inner region has average values of temperature, pressure, and axial and poloidal current densities that are orders of magnitude larger than in the outer region. The temperature, axial current density and pressure gradient vary rapidly by orders of magnitude in the transition region. The number density, thermal conductivity and Dreicer electric field have a global minimum in the transition region, while the Hall resistivity, Alfvén speed, normalized charge separation, Debye length, (ωλ)ion and the radial electric field have global maxima in the transition region. As a result of the Hall and electron-pressure-gradient effects, the transition region is an electric dipole layer in which the normalized charge separation is localized and in which the radial electric field can be large. The model has an intrinsic value of β, about 13·3%, which must be exceeded in order that a plasma-confining solution exist. The model has an intrinsic length scale that, for plasma-confining solutions, is a measure of the thickness of the boundary-layer transition region. If appropriate boundary conditions are given at R = 0 then the equilibrium is uniquely determined. If appropriate boundary conditions are given at any outer boundary R = a then the equilibrium exhibits a bifurcation into two states, one of which exhibits plasma confinement and carries a larger axial current than the other, which is almost homogeneous and cannot confine a plasma. Exact expressions for the two values of the axial current in the bifurcation are derived. If the boundary conditions are given at R = a then a solution exists if and only if the constant driving electric field exceeds a critical value. An exact expression for this critical electric field is derived. It is conjectured that the bifurcation is associated with an electric-field-driven transition in a real plasma, between states with different rotation rates, energy dissipation rates and confinement properties. Such a transition may serve as a relatively simple example of the L—H mode transition observed in tokamaks.


2010 ◽  
Vol 77 (4) ◽  
pp. 457-467 ◽  
Author(s):  
G. Y. FU

AbstractIt is shown that nonlinear self-interaction of energetic particle-driven geodesic acoustic mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second-order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second-order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low fluctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.


2019 ◽  
Vol 61 (5) ◽  
pp. 054003 ◽  
Author(s):  
A Krämer-Flecken ◽  
X Han ◽  
T Windisch ◽  
J Cosfeld ◽  
P Drews ◽  
...  

2021 ◽  
Vol 28 (6) ◽  
pp. 062507
Author(s):  
I. Senichenkov ◽  
E. Kaveeva ◽  
V. Rozhansky ◽  
D. Coster

2012 ◽  
Vol 52 (7) ◽  
pp. 074013 ◽  
Author(s):  
T. Zhang ◽  
Y. Liang ◽  
Y. Sun ◽  
A. Krämer-Flecken ◽  
S. Soldatov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document